Project description:For additional details see Ebert et al, Identification and Small Molecule Inhibition of an ATF4-dependent Pathway to Age-related Skeletal Muscle Weakness and Atrophy. Weight-matched cohorts of 22-month-old male C57BL/6 mice were provided ad libitum access to standard chow (control) or standard chow supplemented with 0.27% ursolic acid (UA) or 0.05% tomatidine (TM) for 2 months. After the 2 month treatment period, quadriceps femoris muscles were harvested. mRNA levels in muscles harvested from ursolic acid or tomatidine fed mice were normalized to levels in muscles fed control diet.
Project description:Aging is a major international concern and brings with it formidable socioeconomical and healthcare challenges. An attainable approach to improve general health in humans is using small molecules. Tomatidine, a natural compound abundant in unripe tomatoes, inhibits aging-related skeletal muscle atrophy in mice. Here we show that tomatidine extends lifespan and healthspan in the aging animal model C. elegans, which shares many major longevity pathways with those of mammals. Tomatidine improves behaviors related to healthspan, including increased pharyngeal pumping and swimming movement, and also reduces deterioration of muscle cells in worms. Microarray, imaging, and behavioral analysis reveal that tomatidine maintains mitochondrial homeostasis through mitochondrial biogenesis and PINK-1/DCT-1-dependent mitophagy. Mechanistically, tomatidine induces mitochondrial hormesis by mildly inducing ROS production, which in turn activates the cellular antioxidant response SKN-1/Nrf2 pathway, followed by increased mitophagy in worms, primary rat neurons, and human cells. Our data suggest that tomatidine may delay some physiological aspects of aging, and points to new approaches for pharmacological interventions towards diseases of aging.
Project description:Heterochronic blood exchange (HBE) has demonstrated that circulating factors restore youthful features to aged tissues. However, the systemic mediators of those rejuvenating effects remain poorly defined. We show that the beneficial effect of young blood on aged muscle regeneration was diminished when serum was depleted of extracellular vesicles (EVs). Whereas EVs from young animals rejuvenate aged cell bioenergetics and skeletal muscle regeneration, aging shifts EV subpopulation heterogeneity and compromises downstream benefits on recipient cells. Machine learning classifiers revealed that aging shifts the nucleic acid, but not protein, fingerprint of circulating EVs. Alterations in sub-population heterogeneity were accompanied by declines in transcript levels of the pro-longevity protein, α-Klotho, and injection of EVs improved muscle regeneration in a Klotho mRNA-dependent manner. These studies demonstrate that EVs play a key role in the rejuvenating effects of HBE and that Klotho transcripts within EVs phenocopy the effects of young serum on aged skeletal muscle.
Project description:Arrestin Domain Containing 2 and 3 (Arrdc2/3) are genes whose mRNA contents are decreased in young skeletal muscle following mechanical overload. Arrdc3 is linked to the regulation of signaling pathways in non-muscle cells that could influence skeletal muscle size. Despite a similar amino acid sequence, Arrdc2 function remains undefined. The purpose of this study was to further explore the relationship of Arrdc2/Arrdc3 expression with changes in mechanical load in young and aged muscle and define the effect of Arrdc2/3 expression on myotube diameter. In young and aged mice, mechanical load was decreased using hindlimb suspension while mechanical load was increased by reloading previously unloaded muscle or inducing high force contractions. Arrdc2 and Arrdc3 mRNAs were overexpressed in C2C12 myotubes using adenoviruses. Myotube diameter was determined 48 h post-transfection and RNA sequencing was performed on those samples. Arrdc2 and Arrdc3 mRNA content was higher in the unloaded muscle within 1 day of disuse and remained higher up through 10 days. The induction of Arrdc2 mRNA was more pronounced in aged muscle than young muscle in response to unloading. Reloading previously unloaded muscle of young and aged mice restored Arrdc2 and Arrdc3 levels to ambulatory levels. Increasing mechanical load beyond normal ambulatory levels lowered Arrdc2 but not Arrdc3 mRNA in young and aged muscle. Arrdc2, not Arrdc3, overexpression was sufficient to lower myotube diameter in C2C12 cells in part by altering the transcriptome favoring muscle atrophy. These data are consistent with Arrdc2 contributing to disuse atrophy, particularly in aged muscle.
Project description:Elevated glucocorticoids alter the skeletal muscle transcriptome to induce a myopathy characterized by muscle atrophy, muscle weakness, and decreased metabolic function. These effects are more likely to occur and be more severe in aged muscle. Resistance exercise can blunt development of glucocorticoid myopathy in young muscle, but the potential to blunt the signals initiating myopathy in aged muscle is unknown. To answer this, young (4-month-old) and aged (24-25-month-old) male C57BL/6 mice were randomized to receive either an intraperitoneal (IP) injection of dexamethasone (DEX; 2 mg/kg) or saline as a control. Two hours post-injections, tibialis anterior (TA) muscles of mice were subjected to unilateral high force contractions. Muscles were harvested four hours later. The glucocorticoid- and contraction-sensitive genes were determined by RNA sequencing. The number of glucocorticoid sensitive genes was similar between young and aged muscle. Contractions altered more glucocorticoid-sensitive genes in aged muscle, with this outcome primarily occurring when hormone levels were elevated. Glucocorticoid-sensitive gene programs altered by contractions were primarily related to metabolism in young mice and muscle size regulation and inflammation in aged mice. In silico analysis implied Peroxisome proliferator-activated receptor gamma-1 (PPARG) contributed to the contraction-induced changes in glucocorticoid-sensitive genes in aged muscle. Increasing PPARG expression in the TA of aged mice using Adeno-associated virus serotype 9 partially counteracted the glucocorticoid-induced reduction in Runt-related transcription factor 1 (Runx1) mRNA content, recapitulating the effects observed by contractions. Overall, these data contribute to our understanding of the mechanical regulation of the glucocorticoid transcriptome in aged skeletal muscle.
Project description:Skeletal muscle dysfunction in survivors of pneumonia is a major cause of lasting morbidity that disproportionately affects older individuals. We found that skeletal muscle recovery was impaired in aged compared with young mice after influenza A virus-induced pneumonia. In young mice, recovery of muscle loss was associated with expansion of tissue-resident skeletal muscle macrophages and downregulation of MHC II expression, followed by a proliferation of muscle satellite cells. These findings were absent in aged mice and in mice deficient in Cx3cr1. Transcriptomic profiling of tissue-resident skeletal muscle macrophages from aged compared with young mice showed downregulation of pathways associated with phagocytosis and proteostasis, and persistent upregulation of inflammatory pathways. Consistently, skeletal muscle macrophages from aged mice failed to downregulate MHCII expression during recovery from influenza A virus induced pneumonia and showed impaired phagocytic function in vitro. Like aged animals, mice deficient in the phagocytic receptor Mertk showed no macrophage expansion, MHCII downregulation or satellite cell proliferation and failed to recover skeletal muscle function after influenza A pneumonia. Our data suggest that a loss of phagocytic function in a CX3CR1+ tissue-resident skeletal muscle macrophage population in aged mice precludes satellite cell proliferation and recovery of skeletal muscle function after influenza A pneumonia.