Project description:Mardinoglu2014 - Genome-scale metabolic model
(HMR version 2.0) - human hepatocytes (iHepatocytes2322)
This model is described in the article:
Genome-scale metabolic
modelling of hepatocytes reveals serine deficiency in patients
with non-alcoholic fatty liver disease.
Mardinoglu A, Agren R, Kampf C,
Asplund A, Uhlen M, Nielsen J.
Nat Commun 2014; 5: 3083
Abstract:
Several liver disorders result from perturbations in the
metabolism of hepatocytes, and their underlying mechanisms can
be outlined through the use of genome-scale metabolic models
(GEMs). Here we reconstruct a consensus GEM for hepatocytes,
which we call iHepatocytes2322, that extends previous models by
including an extensive description of lipid metabolism. We
build iHepatocytes2322 using Human Metabolic Reaction 2.0
database and proteomics data in Human Protein Atlas, which
experimentally validates the incorporated reactions. The
reconstruction process enables improved annotation of the
proteomics data using the network centric view of
iHepatocytes2322. We then use iHepatocytes2322 to analyse
transcriptomics data obtained from patients with non-alcoholic
fatty liver disease. We show that blood concentrations of
chondroitin and heparan sulphates are suitable for diagnosing
non-alcoholic steatohepatitis and for the staging of
non-alcoholic fatty liver disease. Furthermore, we observe
serine deficiency in patients with NASH and identify PSPH,
SHMT1 and BCAT1 as potential therapeutic targets for the
treatment of non-alcoholic steatohepatitis.
This model is hosted on
BioModels Database
and identified by:
MODEL1402200003.
To cite BioModels Database, please use:
BioModels Database:
An enhanced, curated and annotated resource for published
quantitative kinetic models.
To the extent possible under law, all copyright and related or
neighbouring rights to this encoded model have been dedicated to
the public domain worldwide. Please refer to
CC0
Public Domain Dedication for more information.
Project description:Non-alcoholic fatty liver disease (NAFLD) is characterized by a series of pathological changes that can progress from simple fatty liver disease to non-alcoholic steatohepatitis (NASH). The objective of this study is to describe changes in global gene expression associated with the progression of NAFLD. This study is focused on the expression levels of genes responsible for the absorption, distribution, metabolism and excretion (ADME) of drugs. Differential gene expression between three clinically defined pathological groups; normal, steatosis and NASH was analyzed. The samples were diagnosed as normal, steatotic, NASH with fatty liver (NASH fatty) and NASH without fatty liver (NASH NF). Genome-wide mRNA levels in samples of human liver tissue were assayed with Affymetrix GeneChipM-. Human 1.0ST arrays
Project description:Non-alcoholic fatty liver (NAFL) has the potential to progress to non-alcoholic steatohepatitis (NASH) or to promote type 2 diabetes mellitus (T2DM). However, NASH and T2DM do not always develop coordinately. We established rat models of NAFL, NASH, and NAFL + T2DM to recapitulate different phenotypes associated with NAFLD and its progression. Microarrays were used to identify hepatic gene expression changes in each of these models. The goal is to identify a predictor of different NAFLD progressions. Non-alcoholic fatty liver disease (NAFLD) is recognized as a low-grade systemic inflammatory state with both hepatic and extra-hepatic manifestations. We aimed to identify common key regulators and adaptive pathways in different NAFLD phenotypes. NAFL, NASH and NAFL+T2DM rat models were used to represent simple fatty liver, fatty liver with severe hepatic manifestations, and fatty liver with severe metabolic manifestations, respectively. We applied microarray analysis to characterize the key regulators and adaptive pathways in different NAFLD phenotypes. There are 12 samples in our study which belonged to 4 groups, and each group contains 3 different samples.