Project description:A series of two color gene expression profiles obtained using Agilent 44K expression microarrays was used to examine sex-dependent and growth hormone-dependent differences in gene expression in rat liver. This series is comprised of pools of RNA prepared from untreated male and female rat liver, hypophysectomized (‘Hypox’) male and female rat liver, and from livers of Hypox male rats treated with either a single injection of growth hormone and then killed 30, 60, or 90 min later, or from livers of Hypox male rats treated with two growth hormone injections spaced 3 or 4 hr apart and killed 30 min after the second injection. The pools were paired to generate the following 6 direct microarray comparisons: 1) untreated male liver vs. untreated female liver; 2) Hypox male liver vs. untreated male liver; 3) Hypox female liver vs. untreated female liver; 4) Hypox male liver vs. Hypox female liver; 5) Hypox male liver + 1 growth hormone injection vs. Hypox male liver; and 6) Hypox male liver + 2 growth hormone injections vs. Hypox male liver. A comparison of untreated male liver and untreated female liver liver gene expression profiles showed that of the genes that showed significant expression differences in at least one of the 6 data sets, 25% were sex-specific. Moreover, sex specificity was lost for 88% of the male-specific genes and 94% of the female-specific genes following hypophysectomy. 25-31% of the sex-specific genes whose expression is altered by hypophysectomy responded to short-term growth hormone treatment in hypox male liver. 18-19% of the sex-specific genes whose expression decreased following hypophysectomy were up-regulated after either one or two growth hormone injections. Finally, growth hormone suppressed 24-36% of the sex-specific genes whose expression was up-regulated following hypophysectomy, indicating that growth hormone acts via both positive and negative regulatory mechanisms to establish and maintain the sex specificity of liver gene expression. For full details, see V. Wauthier and D.J. Waxman, Molecular Endocrinology (2008)
Project description:Background and aims: There are considerable evidences demonstrating that angiogenesis and chronic inflammation are mutually dependent. However, although cirrhosis progression is characterized with a chronic hepatic inflammatory process, this connection is not sufficiently explored as a therapeutic strategy. Therefore, this study was aimed to assess the potential benefits of targeting angiogenesis in cirrhotic livers to modulate inflammation and fibrosis. For this purpose, we evaluate the therapeutic utility of angiogenesis inhibitors. Methods: The in vivo effects of angiogenesis inhibitors were monitored in liver of cirrhotic rats by measuring angiogenesis, inflammatory infiltrate, fibrosis, a-smooth muscle actin (a-SMA) accumulation, differential gene expression (by microarrays), and portal pressure. Results: Cirrhosis progression was associated with a significant enhancement of vascular density and expression of vascular endothelial growth factor-A (VEGF-A), angiopoietin-1, angiopoietin-2 and placental growth factor (PlGF) in cirrhotic livers. The newly formed hepatic vasculature expressed vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1). Interestingly, the expression of these adhesion molecules correlated well with local inflammatory infiltrate. Livers of cirrhotic rats treated with angiogenesis inhibitors presented a significant decrease in hepatic vascular density, inflammatory infiltrate, a-SMA abundance, collagen expression and portal pressure. Conclusion: Angiogenesis inhibitors may offer a potential novel therapy for cirrhosis due to its multiple mechanisms of action against angiogenesis, inflammation and fibrosis in cirrhotic livers. Experiment Overall Design: RNA from liver of 4 non-treated cirrhotic rats or 4 rats treated with angiogenesis inhibitors was hybridized to 8 high-density oligonucleotide microarray (Rat2302, Affymetrix, Santa Clara, CA)
Project description:A series of two color gene expression profiles obtained using Agilent 44K expression microarrays was used to examine sex-dependent and growth hormone-dependent differences in gene expression in rat liver. This series is comprised of pools of RNA prepared from untreated male and female rat liver, hypophysectomized (‘Hypox’) male and female rat liver, and from livers of Hypox male rats treated with either a single injection of growth hormone and then killed 30, 60, or 90 min later, or from livers of Hypox male rats treated with two growth hormone injections spaced 3 or 4 hr apart and killed 30 min after the second injection. The pools were paired to generate the following 6 direct microarray comparisons: 1) untreated male liver vs. untreated female liver; 2) Hypox male liver vs. untreated male liver; 3) Hypox female liver vs. untreated female liver; 4) Hypox male liver vs. Hypox female liver; 5) Hypox male liver + 1 growth hormone injection vs. Hypox male liver; and 6) Hypox male liver + 2 growth hormone injections vs. Hypox male liver. A comparison of untreated male liver and untreated female liver liver gene expression profiles showed that of the genes that showed significant expression differences in at least one of the 6 data sets, 25% were sex-specific. Moreover, sex specificity was lost for 88% of the male-specific genes and 94% of the female-specific genes following hypophysectomy. 25-31% of the sex-specific genes whose expression is altered by hypophysectomy responded to short-term growth hormone treatment in hypox male liver. 18-19% of the sex-specific genes whose expression decreased following hypophysectomy were up-regulated after either one or two growth hormone injections. Finally, growth hormone suppressed 24-36% of the sex-specific genes whose expression was up-regulated following hypophysectomy, indicating that growth hormone acts via both positive and negative regulatory mechanisms to establish and maintain the sex specificity of liver gene expression. For full details, see V. Wauthier and D.J. Waxman, Molecular Endocrinology (2008) This series is comprised of pools of liver RNA prepared from untreated male, hypophysectomized (‘Hypox’) male, untreated female and Hypox female rats (3-4 livers/pool), as well as liver RNA prepared from Hypox male rats treated with a single growth hormone injection and killed either 30, 60, or 90 minutes later (pool of n = 4 livers) or from Hypox male rats treated with two growth hormone injections spaced 3 or 4 hr apart (pool of n = 5 livers). The pools were paired to generate the following 6 direct microarray comparisons: 1) untreated male liver vs. untreated female liver; 2) Hypox male liver vs. untreated male liver; 3) Hypox female liver vs. untreated female liver; 4) Hypox male liver vs. Hypox female liver; 5) Hypox male liver + 1 growth hormone injection vs. Hypox male liver; and 6) Hypox male liver + 2 growth hormone injections vs. Hypox male liver. Dye swapping experiments were carried out for each of the six hybridization experiments, as follows. The Alexa 555-labeled cDNA from one of the two untreated male pools was mixed with the Alexa 647-labeled cDNA from one of the two untreated female pools. Similarly, Alexa 647-labeled cDNA from the second untreated male pool was mixed with the Alexa 555-labeled cDNA from the second untreated female pool. Together, these two mixed cDNA samples comprise a fluorescent reverse pair (dye swap). Dye swaps were similarly carried out for each of the five other competitive hybridization experiments, except that for experiments 5 and 6, a single pool of M-Hypox + GH liver cDNA, or a single pool of M-Hypox + 2GH liver cDNA, was used in each half of the fluorescent reverse pair. Two microarrays, one for each mixed cDNA sample, were hybridized for each of the six fluorescent reverse pairs, giving a total of 12 microarrays.