Project description:In order to understand gene regulation of epithelial cells in the mouse mammary gland, we have generated a comprehensive epigenetic atlas from freshly sorted myoepithelial (basal), luminal progenitor (LP) and mature luminal (ML) from adult mice (9 week-old) encompassing gene expression profiling, histone and polymerase II CUT&Tag sequencing, chromatin accessibility via ATAC-seq and chromatin interactions. We further studied the basal compartment by sorting to additional cell type population: Tspan8+ (quiescent basal, QBa) and Tspan8- (active basal, ABa) cells. We then performed gene expression profiling analysis using data obtained from RNA-seq of 2 different cell types Tspan8+ and Tspan8- cells.
Project description:In order to understand gene regulation of epithelial cells in the mouse mammary gland, we have generated a comprehensive epigenetic atlas from freshly sorted myoepithelial (basal), luminal progenitor (LP) and mature luminal (ML) from adult mice (9 week-old) encompassing gene expression profiling, histone and polymerase II CUT&Tag sequencing, chromatin accessibility via ATAC-seq and chromatin interactions. We further studied the basal compartment by sorting to additional cell type population: Tspan8+ (quiescent basal, QBa) and Tspan8- (active basal, ABa) cells.
Project description:In order to understand gene regulation of epithelial cells in the mouse mammary gland, we have generated a comprehensive epigenetic atlas from freshly sorted myoepithelial (basal), luminal progenitor (LP) and mature luminal (ML) from adult mice (9 week-old) encompassing gene expression profiling, histone and polymerase II CUT&Tag sequencing, chromatin accessibility via ATAC-seq and chromatin interactions. We further studied the basal compartment by sorting to additional cell type population: Tspan8+ (quiescent basal, QBa) and Tspan8- (active basal, ABa) cells.
Project description:In order to understand gene regulation of epithelial cells in the mouse mammary gland, we have generated a comprehensive epigenetic atlas from freshly sorted myoepithelial (basal), luminal progenitor (LP) and mature luminal (ML) from adult mice (9 week-old) encompassing gene expression profiling, histone and polymerase II CUT&Tag sequencing, chromatin accessibility via ATAC-seq and chromatin interactions. We further studied the basal compartment by sorting to additional cell type population: Tspan8+ (quiescent basal, QBa) and Tspan8- (active basal, ABa) cells.
Project description:In order to understand gene regulation of epithelial cells in the mouse mammary gland, we have generated a comprehensive epigenetic atlas from freshly sorted myoepithelial (basal), luminal progenitor (LP) and mature luminal (ML) from adult mice (9 week-old) encompassing gene expression profiling, histone and polymerase II CUT&Tag sequencing, chromatin accessibility via ATAC-seq and chromatin interactions. We further studied the basal compartment by sorting to additional cell type population: Tspan8+ (quiescent basal, QBa) and Tspan8- (active basal, ABa) cells.
Project description:In order to understand gene regulation of epithelial cells in the mouse mammary gland, we have generated a comprehensive epigenetic atlas from freshly sorted myoepithelial (basal), luminal progenitor (LP) and mature luminal (ML) from adult mice (9 week-old) encompassing gene expression profiling, histone and polymerase II CUT&Tag sequencing, chromatin accessibility via ATAC-seq and chromatin interactions. We further studied the basal compartment by sorting to additional cell type population: Tspan8+ (quiescent basal, QBa) and Tspan8- (active basal, ABa) cells.
Project description:In order to understand gene regulation of epithelial cells in the mouse mammary gland, we have generated a comprehensive epigenetic atlas from freshly sorted myoepithelial (basal), luminal progenitor (LP) and mature luminal (ML) from adult mice (9 week-old) encompassing gene expression profiling, histone and polymerase II CUT&Tag sequencing, chromatin accessibility via ATAC-seq and chromatin interactions. We further studied the basal compartment by sorting to additional cell type population: Tspan8+ (quiescent basal, QBa) and Tspan8- (active basal, ABa) cells.
Project description:In order to understand gene regulation of epithelial cells in the mouse mammary gland, we have generated a comprehensive epigenetic atlas from freshly sorted myoepithelial (basal), luminal progenitor (LP) and mature luminal (ML) from adult mice (9 week-old) encompassing gene expression profiling, histone and polymerase II CUT&Tag sequencing, chromatin accessibility via ATAC-seq and chromatin interactions. We further studied the basal compartment by sorting to additional cell type population: Tspan8+ (quiescent basal, QBa) and Tspan8- (active basal, ABa) cells. We then performed gene expression profiling analysis using data obtained from RNA-seq of 3 different cell types.
Project description:PURPOSE: To provide a detailed gene expression profile of the normal postnatal mouse cornea. METHODS: Serial analysis of gene expression (SAGE) was performed on postnatal day (PN)9 and adult mouse (6 week) total corneas. The expression of selected genes was analyzed by in situ hybridization. RESULTS: A total of 64,272 PN9 and 62,206 adult tags were sequenced. Mouse corneal transcriptomes are composed of at least 19,544 and 18,509 unique mRNAs, respectively. One third of the unique tags were expressed at both stages, whereas a third was identified exclusively in PN9 or adult corneas. Three hundred thirty-four PN9 and 339 adult tags were enriched more than fivefold over other published nonocular libraries. Abundant transcripts were associated with metabolic functions, redox activities, and barrier integrity. Three members of the Ly-6/uPAR family whose functions are unknown in the cornea constitute more than 1% of the total mRNA. Aquaporin 5, epithelial membrane protein and glutathione-S-transferase (GST) omega-1, and GST alpha-4 mRNAs were preferentially expressed in distinct corneal epithelial layers, providing new markers for stratification. More than 200 tags were differentially expressed, of which 25 mediate transcription. CONCLUSIONS: In addition to providing a detailed profile of expressed genes in the PN9 and mature mouse cornea, the present SAGE data demonstrate dynamic changes in gene expression after eye opening and provide new probes for exploring corneal epithelial cell stratification, development, and function and for exploring the intricate relationship between programmed and environmentally induced gene expression in the cornea. Keywords: other