Project description:Strain N16961 was incubated with crab shell in artificial seawater media for 24 hours. cDNA from 1 ug RNA was labeled with Cy3 (planktonic bacteria) and Cy5 (crab attached bacteria). A growth condition experiment design type is where some part of the growth condition is changed for the purposes of the experiment, examples of growth conditions changed are media, temperature, humidity, light, nutrients. Keywords: growth_condition_design
Project description:Strain N16961 was incubated with crab shell in artificial seawater media for 24 hours. cDNA from 1 ug RNA was labeled with Cy3 (planktonic bacteria) and Cy5 (crab attached bacteria). A growth condition experiment design type is where some part of the growth condition is changed for the purposes of the experiment, examples of growth conditions changed are media, temperature, humidity, light, nutrients. Using regression correlation
Project description:Strain N16961 was incubated with crab shell in artificial seawater media for 24 hours. cDNA from 1 ug RNA was labeled with Cy3 (planktonic bacteria) and Cy5 (crab attached bacteria).
Project description:Purpose:The mud crab Scylla paramamosain is an economically important marine crab in China suffering from severe outbreaks of infectious disease caused by marine bacteria such as Vibrio Parahaemolyticus, resulting in great economic losses. However, the mechanisms involved in the immune response of this crab to bacterial infection are not fully understood. To understand the molecular mechanisms underlying the immune response to such pathogenic bacteria, we used high-throughput deep sequencing technology to investigate the transcriptome and comparative expression profiles of the mud crab S.paramamosain infected with V.parahaemolyticus. Methods: The hemocytes sampled at 0-24h after infection with V.parahaemolyticus were used for transcriptome analysis. The hemocytes sampled at 24 h after injections with V.parahaemolyticus and no injected 0h(as control) were used for gene expression profiling analysis. Results: A total of 52,934,042 reads were obtained and assembled into 186,193 contigs in transcriptional responses of the V.parahaemolyticus-infected mud crab. Via annotation to the NCBI database and the Swissprot database, we obtained 48,934 identified unigenes. In total, 10,139(20.7%) unigenes were classified into Gene Ontology, and 25,349 unigenes were found in 20 KEGG categories. These genes included representatives from almost all functional categories. By using Solexa/Illumina's DeepSAGE, 1213 differentially expressed genes (P value < 0.05) were detected in comparative analysis of the expression profiles between V.parahaemolyticus-infected crabs and control crabs, including 538 remarkably upregulated genes and 675 remarkably downregulated genes. Conclusions: Based on our results, we conclude that the inflammatory response may play an important role in the early stages of infection. The signaling cascades such as the chemokine, JAK-STAT, and MAPK pathways are regulated by V.parahaemolyticus infection. These results revealed changes of multiple signaling pathways involved in immunity during V.parahaemolyticus infection, which will facilitate our comprehensive understanding of the mechanisms involved in the immune response to bacterial infection in the mud crab.
Project description:Crab is one of the major source for V. parahaemolyticus outbreak among aquatic products in Northeast Asian due to improperly cooking and wound infection by mishandling. However, there is no report on whole genome sequence of V. parahaemolyticus isolated from contaminated crab, thus no information is available for major virulence factors about V. parahaemolyticus obtained from crab. Therefore, the analysis of transcriptome of isolated V. parahaemolyticus from crab products are necessary to investigate potential risk of foodborne illness by contaminated products.