Project description:Metformin has been commonly used for decades to treat type 2 diabetes. Recent data indicates that mice treated with metformin live longer and healthier lives. Here, we show that chronic metformin exposure in mice and diabetics taking metformin have higher levels of the microRNA processing protein, Dicer. Examination of how metformin affects Dicer expression revealed that metformin alters binding of the AUF1 RNA-binding protein to DICER1 mRNA, which leads to stabilization of DICER1 mRNA. We found differential changes in microRNA expression in mice treated with metformin or caloric restriction, a proven life extending intervention. Several of these microRNAs are important for regulating cellular senescence and lifespan in model organisms. Consistent with this observation, treatment with metformin decreased cellular senescence in a Dicer-dependent manner. These data lead us to hypothesize that changes in Dicer levels may be important for organismal aging and that interventions that upregulate Dicer expression (e.g., metformin) may offer new therapeutic approaches to combat or prevent age-related diseases. Key words: diabetes mellitus, metformin, senescence, miRNA, RNA-binding proteins
Project description:The mammalian RNA-binding protein AUF1 (AU-binding factor 1, also known as heterogeneous nuclear ribonucleoprotein D, hnRNP D) binds to numerous mRNAs and influences their post-transcriptional fate. Given that many AUF1 target mRNAs encode muscle-specific factors, we investigated the function of AUF1 in skeletal muscle differentiation. In mouse C2C12 myocytes, where AUF1 levels rise at the onset of myogenesis and remain elevated throughout myocyte differentiation into myotubes, RIP (RNP immunoprecipitation) analysis indicated that AUF1 binds prominently to Mef2c (myocyte enhancer factor 2c) mRNA, which encodes the key myogenic transcription factor Mef2c. By performing mRNA half-life measurements and polysome distribution analysis, we found that AUF1 associated with the 3’UTR of Mef2c mRNA and promoted Mef2c translation without affecting Mef2c mRNA stability. In addition, AUF1 promoted Mef2c gene transcription via a lesser-known role of AUF1 in transcriptional regulation. Importantly, lowering AUF1 delayed myogenesis, while ectopically restoring Mef2c expression levels partially rescued the impairment of myogenesis seen after reducing AUF1 levels. We propose that Mef2c is a key effector of the myogenesis program promoted by AUF1. Keywords: ribonucleoprotein complex; post-transcriptional gene regulation; muscle cell differentiation; myocytes; mRNA translation; mRNA stability; post-transcriptional gene regulation; transcriptome
Project description:Introgressed variants from other species can be an important source of genetic variation because they may arise rapidly, can include multiple mutations on a single haplotype, and have often been pretested by selection in the species of origin. Although introgressed alleles are generally deleterious, several studies have reported introgression as the source of adaptive alleles-including the rodenticide-resistant variant of Vkorc1 that introgressed from Mus spretus into European populations of Mus musculus domesticus. Here, we conducted bidirectional genome scans to characterize introgressed regions into one wild population of M. spretus from Spain and three wild populations of M. m. domesticus from France, Germany, and Iran. Despite the fact that these species show considerable intrinsic postzygotic reproductive isolation, introgression was observed in all individuals, including in the M. musculus reference genome (GRCm38). Mus spretus individuals had a greater proportion of introgression compared with M. m. domesticus, and within M. m. domesticus, the proportion of introgression decreased with geographic distance from the area of sympatry. Introgression was observed on all autosomes for both species, but not on the X-chromosome in M. m. domesticus, consistent with known X-linked hybrid sterility and inviability genes that have been mapped to the M. spretus X-chromosome. Tract lengths were generally short with a few outliers of up to 2.7 Mb. Interestingly, the longest introgressed tracts were in olfactory receptor regions, and introgressed tracts were significantly enriched for olfactory receptor genes in both species, suggesting that introgression may be a source of functional novelty even between species with high barriers to gene flow.
Project description:Translational research is commonly performed in the C57B6/J mouse strain, chosen for its genetic homogeneity and phenotypic uniformity. Here, we evaluate the suitability of the white-footed deer mouse (Peromyscus leucopus) as a model organism for aging research, offering a comparative analysis against C57B6/J and diversity outbred (DO) Mus musculus strains. Our study includes comparisons of body composition, skeletal muscle function, and cardiovascular parameters, shedding light on potential applications and limitations of P. leucopus in aging studies. Notably, P. leucopus exhibits distinct body composition characteristics, emphasizing reduced muscle force exertion and a unique metabolism, particularly in fat mass. Cardiovascular assessments showed changes in arterial stiffness, challenging conventional assumptions and highlighting the need for a nuanced interpretation of aging-related phenotypes. Our study also highlights inherent challenges associated with maintaining and phenotyping P. leucopus cohorts. Behavioral considerations, including anxiety-induced responses during handling and phenotyping assessment, pose obstacles in acquiring meaningful data. Moreover, the unique anatomy of P. leucopus necessitates careful adaptation of protocols designed for Mus musculus. While showcasing potential benefits, further extensive analyses across broader age ranges and larger cohorts are necessary to establish the reliability of P. leucopus as a robust and translatable model for aging studies.
Project description:Although several studies indicate that ARE-specific RNA binding proteins (ARE-BPs) contribute to the development of cancer, the detailed functions and mechanisms of ARE-BPs have not been fully elucidated. By using a bioinformatics analysis of two well-established hepatocellular carcinoma (HCC) datasets, we identified the AU-rich binding factor 1(AUF1), one of the well-known ARE-BPs, was abnormally highly expressed in HCC and the high expression of AUF1 was correlated with poor prognosis of HCC patients. The prognostic value of AUF1 expression was also confirmed in our HBV-related HCC cohorts. Gain and loss of function analyses demonstrated that AUF1 promoted HCC tumorigenesis both in vitro and in vivo. Mechanistically, we found that aldoketo reductase family 1 member B 10(AKR1B10) was a critical target of AUF1 and was essential for sustaining the AUF1-induced proliferation of HCC cells. AUF1 stabilized AKR1B10 mRNA by binding to the 3'UTR region of AKR1B10. Additionally, we confirmed that E2F1 enhanced AUF1 expression in HCC through the transcription level, and in HBV-related HCC, HBx could up-regulate E2F1 expression and promote the expression of AUF1. Our study reveals a novel role of AUF1 in promoting hepatocarcinogenesis via the post-transcriptional regulation of AKR1B10 expression and proposes that the HBx/E2F1/AUF1/AKR1B10 pathway may serve as a potential therapeutic target in HCC.
Project description:The mammalian RNA-binding protein AUF1 (AU-binding factor 1, also known as heterogeneous nuclear ribonucleoprotein D, hnRNP D) binds to numerous mRNAs and influences their post-transcriptional fate. Given that many AUF1 target mRNAs encode muscle-specific factors, we investigated the function of AUF1 in skeletal muscle differentiation. In mouse C2C12 myocytes, where AUF1 levels rise at the onset of myogenesis and remain elevated throughout myocyte differentiation into myotubes, RIP (RNP immunoprecipitation) analysis indicated that AUF1 binds prominently to Mef2c (myocyte enhancer factor 2c) mRNA, which encodes the key myogenic transcription factor Mef2c. By performing mRNA half-life measurements and polysome distribution analysis, we found that AUF1 associated with the 3M-bM-^@M-^YUTR of Mef2c mRNA and promoted Mef2c translation without affecting Mef2c mRNA stability. In addition, AUF1 promoted Mef2c gene transcription via a lesser-known role of AUF1 in transcriptional regulation. Importantly, lowering AUF1 delayed myogenesis, while ectopically restoring Mef2c expression levels partially rescued the impairment of myogenesis seen after reducing AUF1 levels. We propose that Mef2c is a key effector of the myogenesis program promoted by AUF1. Keywords: ribonucleoprotein complex; post-transcriptional gene regulation; muscle cell differentiation; myocytes; mRNA translation; mRNA stability; post-transcriptional gene regulation; transcriptome C2C12 mouse myoblasts were cultured in Dulbecco's modified Eagle's medium (DMEM; Invitrogen, Carlsbad, CA, USA) supplemented with 10% serum (Invitrogen) and antibiotics (Invitrogen). Differentiation was induced on sub-confluent cultures by replacing the growth media (GM, DMEM with 10% FBS) with differentiation media (DM, DMEM with 2% horse serum). At various time points after differentiation, cells were harvested and RNA was extracted with phenol-chloroform and either saved as input samples for microarrys or subjected to AUF1 or IgG ribonucleoprotein immunoprecipitation. C2C12 cells cultured in GM and DM were lysed in 20 mM Tris-HCl at pH 7.5, 100 mM KCl, 5 mM MgCl2, and 0.5% NP-40 for 10 min on ice and centrifuged at 15,000 M-CM-^W g for 10 min at 4M-BM-0C. The supernatants were incubated with protein-A Dynabeads beads coated with anti-AUF1 (Millipore) or with control IgG (Santa Cruz Biotechnology) antibodies for 2 hr at 4M-BM-0C. The beads were washed with NT2 buffer (50 mM Tris-HCl [pH 7.5], 150 mM NaCl, 1 mM MgCl2, 0.05% NP-40), followed by incubation with 20 units of RNase-free DNase I for 15 min at 37M-BM-0C to remove the DNA. The samples were then incubated for 15 min at 55M-BM-0C with 0.1% SDS/0.5 mg/ml Proteinase K to digest proteins. The RNA from the IP samples was extracted using phenol-chloroform, precipitated, and used along with the RNA from the input samples for cDNA microarrays.
Project description:BackgroundCopy number variation is an important dimension of genetic diversity and has implications in development and disease. As an important model organism, the mouse is a prime candidate for copy number variant (CNV) characterization, but this has yet to be completed for a large sample size. Here we report CNV analysis of publicly available, high-density microarray data files for 351 mouse tail samples, including 290 mice that had not been characterized for CNVs previously.ResultsWe found 9634 putative autosomal CNVs across the samples affecting 6.87% of the mouse reference genome. We find significant differences in the degree of CNV uniqueness (single sample occurrence) and the nature of CNV-gene overlap between wild-caught mice and classical laboratory strains. CNV-gene overlap was associated with lipid metabolism, pheromone response and olfaction compared to immunity, carbohydrate metabolism and amino-acid metabolism for wild-caught mice and classical laboratory strains, respectively. Using two subspecies of wild-caught Mus musculus, we identified putative CNVs unique to those subspecies and show this diversity is better captured by wild-derived laboratory strains than by the classical laboratory strains. A total of 9 genic copy number variable regions (CNVRs) were selected for experimental confirmation by droplet digital PCR (ddPCR).ConclusionThe analysis we present is a comprehensive, genome-wide analysis of CNVs in Mus musculus, which increases the number of known variants in the species and will accelerate the identification of novel variants in future studies.
Project description:BackgroundLong terminal repeat (LTR) retrotransposons make up a large fraction of the typical mammalian genome. They comprise about 8% of the human genome and approximately 10% of the mouse genome. On account of their abundance, LTR retrotransposons are believed to hold major significance for genome structure and function. Recent advances in genome sequencing of a variety of model organisms has provided an unprecedented opportunity to evaluate better the diversity of LTR retrotransposons resident in eukaryotic genomes.ResultsUsing a new data-mining program, LTR_STRUC, in conjunction with conventional techniques, we have mined the GenBank mouse (Mus musculus) database and the more complete Ensembl mouse dataset for LTR retrotransposons. We report here that the M. musculus genome contains at least 21 separate families of LTR retrotransposons; 13 of these families are described here for the first time.ConclusionsAll families of mouse LTR retrotransposons are members of the gypsy-like superfamily of retroviral-like elements. Several different families of unrelated non-autonomous elements were identified, suggesting that the evolution of non-autonomy may be a common event. High sequence similarity between several LTR retrotransposons identified in this study and those found in distantly-related species suggests that horizontal transfer has been a significant factor in the evolution of mouse LTR retrotransposons.
Project description:House mice (Mus musculus) emit ultrasonic vocalizations (USVs), which are surprisingly complex and have features of bird song, but their functions are not well understood. Previous studies have reported mixed evidence on whether there are sex differences in USV emission, though vocalization rate or other features may depend upon whether potential receivers are of the same or opposite sex. We recorded the USVs of wild-derived adult house mice (F1 of wild-caught Mus musculus musculus), and we compared the vocalizations of males and females in response to a stimulus mouse of the same- or opposite-sex. To detect and quantify vocalizations, we used an algorithm that automatically detects USVs (Automatic Mouse Ultrasound Detector or A-MUD). We found high individual variation in USV emission rates (4 to 2083 elements/10 min trial) and a skewed distribution, with most mice (60%) emitting few (≤50) elements. We found no differences in the rates of calling between the sexes overall, but mice of both sexes emitted vocalizations at a higher rate and higher frequencies during opposite- compared to same-sex interactions. We also observed a trend toward higher amplitudes by males when presented with a male compared to a female stimulus. Our results suggest that mice modulate the rate and frequency of vocalizations depending upon the sex of potential receivers.