Project description:Transcriptional profiling of U937 miR-194-5p (UmiR-194-5p) vs U937 miR-194-5p (UmiR-194-5p) treated with MS275 (SNDX 275;Entinostat) for 24 h at 5uM concetration
Project description:Transcriptional profiling of U937 miR-194-5p (UmiR-194-5p) vs U937 miR-194-5p (UmiR-194-5p) treated with SAHA (Vorinostat; suberoylanilide hydroxamic acid) for 24 h at 5uM concetration
Project description:Non-alcoholic fatty liver disease (NAFLD) involves hepatic accumulation of intracellular lipid droplets via incompletely understood processes. Here, we report distinct and cooperative NAFLD roles of LysTTT-5’tRF transfer RNA fragments and microRNA miR-194-5p. Unlike lean animals, dietary-induced NAFLD mice showed concurrent hepatic decrease of both LysTTT-5’tRF and miR-194-5p levels, which were restored following miR-132 antisense oligonucleotide treatment which suppresses hepatic steatosis. Moreover, exposing human-derived Hep G2 cells to oleic acid for 7 days co-suppressed miR-194-5p and LysTTT-5’tRF levels while increasing lipid accumulation. Importantly, transfecting fattened cells with a synthetic LysTTT-5’tRF mimic elevated mRNA levels of the metabolic regulator β-Klotho while decreasing triglyceride amounts by 30% within 24 hours. In contradistinction, antisense suppression of miR-194-5p induced accumulation of its novel target, the NAFLD-implicated lipid droplet-coating PLIN2 protein. Further, two out of 15 steatosis-alleviating screened drug-repurposing compounds, Danazol and Latanoprost, elevated miR-194-5p or LysTTT-5’tRF levels. The different yet complementary roles of miR-194-5p and LysTTT-5’tRF offer new insights into the complex roles of small non-coding RNAs and the multiple pathways involved in NAFLD pathogenesis.
Project description:Non-alcoholic fatty liver disease (NAFLD) involves hepatic accumulation of intracellular lipid droplets via incompletely understood processes. Here, we report distinct and cooperative NAFLD roles of LysTTT-5’tRF transfer RNA fragments and microRNA miR-194-5p. Unlike lean animals, dietary-induced NAFLD mice showed concurrent hepatic decrease of both LysTTT-5’tRF and miR-194-5p levels, which were restored following miR-132 antisense oligonucleotide treatment which suppresses hepatic steatosis. Moreover, exposing human-derived Hep G2 cells to oleic acid for 7 days co-suppressed miR-194-5p and LysTTT-5’tRF levels while increasing lipid accumulation. Importantly, transfecting fattened cells with a synthetic LysTTT-5’tRF mimic elevated mRNA levels of the metabolic regulator β-Klotho while decreasing triglyceride amounts by 30% within 24 hours. In contradistinction, antisense suppression of miR-194-5p induced accumulation of its novel target, the NAFLD-implicated lipid droplet-coating PLIN2 protein. Further, two out of 15 steatosis-alleviating screened drug-repurposing compounds, Danazol and Latanoprost, elevated miR-194-5p or LysTTT-5’tRF levels. The different yet complementary roles of miR-194-5p and LysTTT-5’tRF offer new insights into the complex roles of small non-coding RNAs and the multiple pathways involved in NAFLD pathogenesis.
Project description:miRNAs deregulation contributes to cancer. miR-194-5p is up-regulated by the HDAC inhibitor (HDACi) SAHA, negatively modulating BCL2-associated transcription factor 1 (BCLAF1). We prove that the miR-194-5p/BCLAF1 equilibrium regulates differentiation, survival and self-renewal of normal progenitors and acute myeloid leukemia (AML) blasts. This equilibrium is perturbed in AMLs resulting in highly expressed BCLAF1, suppression of miR194-5p, consequently, locking cells into an immature, potentially ‘immortal’ state. HDACis reverse this scenario relocating BCLAF1 from the nucleus to a peri-membrane ring-like cytoplasmic structure, sensitizing the cells to differentiation or apoptosis. miR-194-5p and BCLAF1 are significantly deregulated in a cohort of 60 primary AMLs and get restored by HDACi. Our findings connect responsiveness to treatment to re-instatement of miR-194-5p/BCLAF1 balance. These findings might be exploited for (epi-based) anti-leukemia therapy.
Project description:This experiment is designed to investigate the impact of exosomal miR-145-5p on the functional pathway and molecules on RPTEC cells. Data-independent acquisition (DIA) proteomics was conducted in the RPTEC cells transfected with miR-145-5p mimic or scramble control.