Project description:In the lateral root repression system described by Babé et al. (2012), the first asymetric divisions of pericycle cells preceding lateral root formation are repressed during water deficit treatments. During an 8-hr long treatment, an 8-mm long root segment is formed where LR formation has been repressed. The experiment was designed to monitor changes in gene expression during early events of LR formation in barley using this LR repression system.
Project description:The important parts of the root system are root hairs, which play a role in mineral and water uptake. Here, we present an analysis of the transcriptomic response to water deficiency of the wild-type (WT) barley cultivar ‘Karat’ and its root hairless mutant rhl1.a. A comparison of the transcriptional changes induced by water stress resulted in the identification of genes whose expression was specifically affected in each genotype. At the onset of water stress, more genes were modulated by water shortage in the roots of the WT plants than in the roots of the rhl1.a. The roots of the WT plants, but not of the rhl1.a, specifically responded with the induction of genes that are related to the ABA biosynthesis, stomata closure and cell wall biogenesis, thus indicating the specific activation of processes that are related to water stress signalling and protection. On the other hand, the processes of further response to abiotic stimuli, including hydrogen peroxide, heat and high light intensity, were specifically up-regulated in the leaves of the rhl1.a. An extended period of severe stress caused more drastic transcriptome changes in the roots and leaves of the rhl1.a mutant than in those of the WT. These results are in agreement with the much stronger damage to photosystem II in the rhl1.a mutant than in its parent cultivar after ten days of water stress. Taking into account the putative stress sensing and signalling features of the root hair transcriptome, we discuss the role of root hairs as sensors of environmental conditions.
Project description:Waterlogging is a major abiotic stress causing oxygen depletion and carbon dioxide accumulation in the rhizosphere. Barley is more susceptible to waterlogging stress than other cereals. To gain a better understanding of the effect of waterlogging stress in barley, we carried out a genome-wide gene expression analysis in roots of Yerong and Deder2 barley genotypes under waterlogging and control (well-watered) conditions by RNA-Sequencing, using Illumina HiSeq™ 4000 platform.
Project description:We addressed the question how the interaction between the beneficial root endophyte Serendipita vermifera (Sv) and the pathogen Bipolaris sorokiniana (Bs) affects fungal behavior and determines barley host responses using a gnotobiotic natural soil-based split-root system for phenotypic and transcriptional analyses.
Project description:We hypothesized that the genome segments of cultivated barley should show certain similarity with its ancestral wild barley. Instead of whole genome sequences, we employed RNA-Seq to investigated the genomic origin of modern cultivated barley using some representative wild barley genotypes from the Near East and Tibet, and representative world-wide selections of cultivated barley.
Project description:A DNA microarray analysis detected large-scale changes of gene expression in response to Cd stress with a substantial difference between the two barley genotypes differing in Cd tolerance and accumulation. Cd stress led to higher expression of genes involved in transport, carbohydrate metabolism and signal transduction in the low-grain-Cd-accumulating genotype. Novel transporter genes such as zinc transporter genes were identified as being associated with low Cd accumulation. We used microarrays to understand the mechanism of low Cd accumulation in crops which is crucial for sustainable safe food production in Cd-contaminated soils.