Project description:To investigate the effect of the transcriptional regulator Crt1 on the transcirptome of Xanthomonas campestris pv. camp (Xcc), comparative genome-wide transcriptome analysis was conducted. For this purpose, the wild-type strain Xcc B100 and the mutant strain Xcc Δcrt1 were each cultivated in triplicates in minimal medium supplemented with glucose as sole carbon source. RNA samples from the biological replicates were obtained at an early stationary growth stage. RNA was isolated and the three replicates were combined for each strain. Furthermore, the data from two arrays (dye swap) were combined to provide statistically reliable conclusions.
Project description:BackgroundThe exopolysaccharide xanthan is a natural product which is extensively used in industry. It is a thickening agent in many fields, from oil recovery to the food sector. Xanthan is produced by the Gram negative bacterium Xanthomonas campestris pv. campestris (Xcc). We analyzed the lipopolysaccharide (LPS) of three mutant strains of the Xcc wild type B100 to distinguish if the xanthan production can be increased when LPS biosynthesis is affected.ResultsThe Xcc B100 O-antigen (OA) is composed of a linear main chain of rhamnose residues with N-acetylfucosamine (FucNAc) side branches at every second rhamnose. It is the major LPS constituent. The O-antigen was missing completely in the mutant strain H21012 (deficient in wxcB), since neither rhamnose nor FucNAc could be detected as part of the LPS by MALDI-TOF-MS, and only a slight amount of rhamnose and no FucNAc was found by GC analysis. The LPS of two other mutants was analyzed, Xcc H28110 (deficient in wxcK) and H20110 (wxcN). In both of them no FucNAc could be detected in the LPS fraction, while the rhamnose moieties were more abundant than in wild type LPS. The measurements were carried out by GC and confirmed by MALDI-TOF-MS analyses that indicated an altered OA in which the branches are missing, while the rhamnan main chain seemed longer than in the wild type. Quantification of xanthan confirmed our hypothesis that a missing OA can lead to an increased production of the extracellular polysaccharide. About 6.3 g xanthan per g biomass were produced by the Xcc mutant H21012 (wxcB), as compared to the wild type production of approximately 5 g xanthan per g biomass. In the two mutant strains with modified OA however, Xcc H28110 (wxcK) and Xcc H20110 (wxcN), the xanthan production of 5.5 g and 5.3 g, respectively, was not significantly increased.ConclusionsMutations affecting LPS biosynthesis can be beneficial for the production of the extracellular polysaccharide xanthan. However, only complete inhibition of the OA resulted in increased xanthan production. The inhibition of the FucNAc side branches did not lead to increased production, but provoked a novel LPS phenotype. The data suggests an elongation of the linear rhamnan main chain of the LPS OA in both the Xcc H28110 (wxcK) and Xcc H20110 (wxcN) mutant strains.
Project description:During evolution, pathogens have developed sophisticated strategies to suppress plant defense responses and promote successful colonization of their hosts. In their attempt to quell host resistance, Gram-negative phytopathogenic bacteria inject type III effectors (T3Es) into plant cells, where they typically target plant components essential for the establishment of defense responses. We have recently shown that the XopD T3E from the strain B100 of Xanthomonas campestris pathovar campestris (XopDXccB100) is able to target AtMYB30, a positive regulator of Arabidopsis defense responses. This protein interaction leads to inhibition of AtMYB30 transcriptional activity and promotion of bacterial virulence. Here, we describe the identification of the complete protein sequence of XopDXccB100, which presents an N-terminal extension of 40 amino acids with respect to the protein annotated in public databases. The implications of this finding are discussed.
Project description:Transcriptional profiling of Xanthomonas campestris pv. campestris 8004 comparing control wild type strain with ravA (or ravS or ravR) mutant The effects of mutating ravS, ravR and ravA on EPS synthesis, biofilm production and motility were very different , the factors responsible for these differences are not clear. With comparative analysis of the regualtion pathways by RavS, RavR and RavA, we can indentify different genes regulated by these three genes and maybe explain the different phenotypes caused by these genes mutations.
Project description:An annotated high-quality draft genome sequence for Xanthomonas campestris pv. campestris race 1 strain Xca5 (originally described as X. campestris pv. armoraciae), the causal agent of black rot on Brassicaceae plants, has been determined. This genome sequence is a valuable resource for comparative genomics within the campestris pathovar.
Project description:Transcriptional profiling of Xanthomonas campestris pv. campestris 8004 comparing control wild type strain with ravA (or ravS or ravR) mutant The effects of mutating ravS, ravR and ravA on EPS synthesis, biofilm production and motility were very different , the factors responsible for these differences are not clear. With comparative analysis of the regualtion pathways by RavS, RavR and RavA, we can indentify different genes regulated by these three genes and maybe explain the different phenotypes caused by these genes mutations. Comparative analysis of the regualtion pathways by RavS, RavR and RavA Two-condition experiment, wild type vs. mutants. Biological replicates were independently grown and harvested. One replicate per array
Project description:We investigated the transcriptome dynamics of Brassica oleracea in response to Xcc race 1 infection at 3 and 12 days after inoculation by using Massive Analysis of 3′-cDNA Ends (MACE) technology
Project description:Bacterial ?-galactosidase is involved in lactose metabolism and acts as a prevalent reporter enzyme used in studying the activities of prokaryotic and eukaryotic promoters. Xanthomonas campestris pv. campestris (Xcc) is the pathogen of black rot disease in crucifers. ?-Galactosidase activity can be detected in Xcc culture, which makes Escherichia coli LacZ unable to be used as a reporter enzyme in Xcc. To systemically understand the ?-galactosidase in Xcc and construct a ?-galactosidase -deficient strain for promoter activity analysis using LacZ as a reporter, we here analyzed the putative ?-galactosidases in Xcc 8004. As glycosyl hydrolase (GH) family 2 (GH2) and 35 (GH35) family enzymes were reported to have beta-galactosidase activities, we studied all of them encoded by Xcc 8004. When expressed in E. coli, only two of the enzymes, XC1214 and XC2985, were found to have ?-galactosidase activity. When deleted from the Xcc 8004 genome, only the XC1214 mutant had no ?-galactosidase activity, and other GH2 and GH35 gene deletions resulted in no significant reduction in ?-galactosidase activity. Therefore, XC1214 is the main ?-galactosidase in Xcc 8004. Notably, we have constructed a ?-galactosidase-free strain that can be employed in gene traps using LacZ as a reporter in Xcc. The results reported herein should facilitate the development of high-capacity screening assays that utilize the LacZ reporter system in Xcc.