Project description:The association between soil microbes and plant roots is present in all natural and agricultural environments. Microbes can be beneficial, pathogenic, or neutral to the host plant development and adaptation to abiotic or biotic stresses. Progress in investigating the functions and changes in microbial communities in diverse environments have been rapidly developing in recent years, but the changes in root function is still largely understudied. The aim of this study was to determine how soil bacteria influence maize root transcription and microRNAs (miRNAs) populations in a controlled inoculation of known microbes over a defined time course. At each time point after inoculation of the maize inbred line B73 with ten bacterial isolates, DNA and RNA were isolated from roots. The V4 region of the 16S rRNA gene was amplified from the DNA and sequenced with the Illumina MiSeq platform. Amplicon sequencing of the 16S rRNA gene indicated that most of the microbes successfully colonized maize roots. The colonization was dynamic over time and varied with the specific bacterial isolate. Small RNA sequencing and mRNA-Seq was done to capture changes in the root transcriptome from 0.5 to 480 hours after inoculation. The transcriptome and small RNA analyses revealed epigenetic and transcriptional changes in roots due to the microbial inoculation. This research provides the foundational data needed to understand how plant roots interact with bacterial partners and will be used to develop predictive models for root response to bacteria.
Project description:During growth in their ecological niche fungi encounter many (micro)organisms that compete for nutrients and /or have antagonistic activity. However, little is known about responses of fungi upon exposure to other microbes. In this project we want to gain insight in induced responses of C. cinerea towards bacteria through comparison of the transcriptome of vegetative C. cinerea mycelium either grown alone or exposed to the bacterial species Escherichia coli or Bacillus subtilis
Project description:Cannabis sativa L., which has been reclassified as an agronomic crop, has experienced an increase in cultivation. Its interactions with a variety of environmental stressors have been extensively studied. However, the mechanisms of recovery through fungal associations remain underexplored. Trichoderma hamatum, known for its role as a biological agent, enhances plant growth and provides antagonistic defense against pathogenic microbes. This meta-dataset aims to investigate whether Th can enhance drought resistance in a Cannabis plants.
Project description:The identification of processes activated by specific microbes during microbiota colonization of plant roots has been hampered by technical constraints in metatranscriptomics. These include lack of reference genomes, high representation of host or microbial rRNA sequences in datasets, or difficulty to experimentally validate gene functions. Here, we recolonized germ-free Arabidopsis thaliana with a synthetic, yet representative root microbiota comprising 106 genome-sequenced bacterial and fungal isolates. We used multi-kingdom rRNA depletion, deep RNA-sequencing and read mapping against reference microbial genomes to analyse the in-planta metatranscriptome of abundant colonizers. We identified over 3,000 microbial genes that were differentially regulated at the soil-root interface. Translation and energy production processes were consistently activated in planta, and their induction correlated with bacterial strains’ abundance in roots. Finally, we used targeted mutagenesis to show that several genes consistently induced by multiple bacteria are required for root colonization in one of the abundant bacterial strains (a genetically tractable Rhodanobacter). Our results indicate that microbiota members activate strain-specific processes but also common gene sets to colonize plant roots.
Project description:In order to polish a long-read genome assembly, short-read illumina data was obtained from Heterodera schachtii cysts (Woensdrecht population from IRS, the Netherlands). Cysts where obtained from infected plant material. Nematodes were cleaned using a sucrose gradient centrifugation step. Thereafter DNA was extracted and used for library preparation and sequencing by Illumina NextSeq500.
Project description:Leaves are colonised by a complex mix of microbes, termed the leaf microbiota. Even though the leaf microbiota is increasingly recognised as an integral part of plant life and health, our understanding of its interactions with the plant host is still limited. Here, mature, axenically grown Arabidopsis thaliana plants were spray-inoculated with different densities of the non-pathogenic bacterium Williamsia sp. Leaf354. High bacterial titers caused disease phenotypes and led to severe transcriptional reprogramming with a strong focus on plant defence.
Project description:Disrupted interactions between host and intestinal bacteria are implicated in the development of colorectal cancer (CRC). However, the functional impacts of these inter-kingdom interactions remain poorly defined. To examine this interplay, we performed small RNA sequencing on the stool of from germ-free (GF) and gnotobiotic ApcMin/+;Il10-/- mice associated with microbes from biofilm-positive human CRC tumor (BT) and biofilm-negative healthy (BX) tissues. revealed a group of significant differentially expressed miRNAs specific to BT compared to BX associated ApcMin/+;Il10-/- mice and several miRNAs that correlated with bacterial genera abundances. Our findings suggest complex interactions within bacterial communities affecting host-derived miRNA and CRC development.