Project description:Identification of the specific WalR (YycF) binding regions on the B. subtilis chromosome during exponential and phosphate starvation growth phases. The data serves to extend the WalRK regulon in Bacillus subtilis and its role in cell wall metabolism, as well as implying a role in several other cellular processes.
Project description:Identification of the specific WalR (YycF) binding regions on the B. subtilis chromosome during exponential and phosphate starvation growth phases. The data serves to extend the WalRK regulon in Bacillus subtilis and its role in cell wall metabolism, as well as implying a role in several other cellular processes. For each sample analyzed in this study three biological replicates were performed. Three different samples were taken from a strain expressing the WalR-SPA protein as well as from wild-type (168) without a tagged WalR. Samples were taken from exponentially growing cells in low phosphate medium (LPDM) as well as from phosphate-limited cells (T2). Each sample compares ChIP DNA vs. Total DNA from the same cells.
Project description:Bacillus subtilis ∆6 is a genome-reduced strain that was cured from six prophages and AT-rich islands. This strain is of great interest for biotechnological applications. Here, we announce the full-genome sequence of this strain. Interestingly, the conjugative element ICEBs1 has most likely undergone self-excision in B. subtilis ∆6.
Project description:Bacillus subtilis 3NA reaches high cell densities during fed-batch fermentation and is an interesting target for further optimization as a production strain. Here, we announce the full genome of B. subtilis 3NA. The presence of specific Bacillus subtilis 168 and W23 genetic features suggests that 3NA is a hybrid of these strains.