Project description:The absorption of visible light in aquatic environments has led to the common assumption that aquatic organisms sense and adapt to penetrative blue/green light wavelengths, but show little or no response to the more attenuated red/far-red wavelengths. Here we show that two marine diatom species, Phaeodactylum tricornutum and Thalassiosira pseudonana, possess a bona fide red/far-red light sensing phytochrome (DPH) that uses biliverdin as a chromophore and displays accentuated red-shifted absorbance peaks compared to other characterized plant and algal phytochromes. Exposure to both red and far-red light causes changes in gene expression in P. tricornutum and the responses to far-red light disappear in DPH knockout cells, demonstrating that P. tricornutum DPH mediates far-red light signaling. The identification of DPH genes in diverse diatom species widely distributed along the water column further emphasizes the ecological significance of far-red light sensing, raising questions about the sources of far-red light. Our analyses indicate that, although far-red wavelengths from sunlight are only detectable at the ocean surface, chlorophyll fluorescence and Raman scattering can generate red/far-red photons in deeper layers. This study opens up novel perspectives on phytochrome-mediated far-red light signaling in the ocean and on the light sensing and adaptive capabilities of marine phototrophs.
Project description:Analysis of etiolated seedlings exposed for 1hr to red light. Phytochromes are red/far-red light receptors, palying important roles in photomorphogenesis. Results suggest that red light and phytochromes regulate a set of genes' expression in seedlings.
Project description:We have studied the transcriptional, metabolic and photo-physiological responses to light of different spectral quality in the marine diatom Phaeodactylum tricornutum through time-series studies of cultures exposed to equal doses of photosynthetically usable radiation of blue, green and red light. The experiments showed that short-term differences in gene expression and profiles are mainly light quality-dependent. Transcription of photosynthesis-associated nuclear genes was activated mainly through a light quality-independent mechanism likely to rely on chloroplast-to-nucleus signaling. In contrast, genes encoding proteins important for photoprotection and PSII repair were highly dependent on a blue light receptor-mediated signal. Changes in energy transfer efficiency by light-harvesting pigments were spectrally dependent; furthermore, a declining trend in photosynthetic efficiency was observed in red light. The combined results suggest that diatoms possess a light quality-dependent ability to activate photoprotection and efficient repair of photodamaged PSII. In spite of approximately equal numbers of PSII-absorbed quanta in blue, green and red light, the spectral quality of light is important for diatom responses to ambient light conditions.
Project description:The red/far-red light photoreceptor phytochrome mediates photomorphological responses in plants. For light sensing and signaling, phytochromes need to associate with open-chain tetrapyrrole molecules as the chromophore. Biosynthesis of tetrapyrrole chromophores requires members of ferredoxin-dependent bilin reductases (FDBRs). There are two FDBRs in Physcomitrella patens, HY2 and PUBS. Knocking out both generates the phytochrome-deficient mutant. Datasets here provides the transcriptome profiling of Physcomitrella protonema grown in the dark and exposed to one hour red light. Wild type and the hy2 pubs double mutant were used to dissect the regulated genes of moss phytochromes. For details, please see PMID: .
Project description:Phytochromes are red/far-red light photoreceptors. We sought to test at the transcriptomic level if Arabidopsis mutants lacking all phytochromes (from phyA to phyE), or just retaining trace levels of phyC, had transcriptional response to red light exposure.
Project description:System responses to equal doses of photosynthetically usable radiation of blue, green, and red light in the marine diatom Phaeodactylum tricornutum.
Project description:The red/far-red light photoreceptor phytochrome mediates photomorphological responses in plants. For light sensing and signaling, phytochromes need to associate with open-chain tetrapyrrole molecules as the chromophore. Biosynthesis of tetrapyrrole chromophores requires members of ferredoxin-dependent bilin reductases (FDBRs). There are two FDBRs in Physcomitrella patens, HY2 and PUBS. Knocking out both generates the phytochrome-deficient mutant. Datasets here provides the transcriptome profiling of Physcomitrella protonema grown in the dark and exposed to one hour red light. Wild type and the hy2 pubs double mutant were used to dissect the regulated genes of moss phytochromes. 4 samples, dark-grown wild-type and pubs hy2 protonema as time 0 control, followed by red light irradiation for one hour respectively
Project description:We have studied the transcriptional, metabolic and photo-physiological responses to light of different spectral quality in the marine diatom Phaeodactylum tricornutum through time-series studies of cultures exposed to equal doses of photosynthetically usable radiation of blue, green and red light. The experiments showed that short-term differences in gene expression and profiles are mainly light quality-dependent. Transcription of photosynthesis-associated nuclear genes was activated mainly through a light quality-independent mechanism likely to rely on chloroplast-to-nucleus signaling. In contrast, genes encoding proteins important for photoprotection and PSII repair were highly dependent on a blue light receptor-mediated signal. Changes in energy transfer efficiency by light-harvesting pigments were spectrally dependent; furthermore, a declining trend in photosynthetic efficiency was observed in red light. The combined results suggest that diatoms possess a light quality-dependent ability to activate photoprotection and efficient repair of photodamaged PSII. In spite of approximately equal numbers of PSII-absorbed quanta in blue, green and red light, the spectral quality of light is important for diatom responses to ambient light conditions. Continuous, axenic culturing of P. tricornutum was done as described in Nymark et al. (2009). The cultures were incubated at 15M-BM-0C under cool white fluorescent light (Philips TLD 36W/96) providing a scalar irradiance (EPAR) of 100 M-NM-<mol m-2 s-1 under continuous white light (CWL) conditions. Upon the onset of the experiment the cultures were synchronized by 48 h dark-treatment (D48). Thereafter the algae were exposed to blue light (BL), green light (GL) or red light (RL) provided by a waveband specific LED panel (SL3500, Photon Systems Instruments). The algae were exposed to 0.5 h, 6 h or 24 h of: 1) 230 M-NM-<mol m-2 s-1 of RL, 2) 100 M-NM-<mol m-2 s-1 of GL, 3) 50 M-NM-<mol m-2 s-1 of BL or 4) 100 M-NM-<mol m-2 s-1 of WL respectively. Three biological replicas for each of the treatments were harvested. Data for the white light exposure and 48h dark treatment is described in GSE42039, PMID: 23520530.
Project description:An experiment was performed to determine the similarities on the RNA level between different conditions where cell division stops in the diatom Phaeodactylum tricornutum. Many of these conditions also increase the accumulation of lipids within the cell or impair photosynthesis. The different metabolic responses were evaluated and the dataset was mined for potential transcriptional regulators of these changes. The experimental setup was as follows: Cells from the pennate diatom Phaeodactylum tricornutum were grown in ESAW medium under continous fluorescent light at 21C in baffled shakeflasks. Exponentially growing cells were harvested by centrifugation and washed twice in 21gr/L NaCL to remove nutrients. Cells were subsequently resuspended in the five different media/conditions (control, darkness, no nitrate, no phosphate, nocodazole).