Project description:The hypothesis that male michrochimerism in eutopic endometrium is a factor for endometriosis, as indicated by indirect evidence was examined in endometrial samples from control (Group 1) and stage IV ovarian endometriosis (Group 2), either fertile (Group 1A and 2A) or Infertile (Group 1B and 2B) pateints. 6 coding and 10 non-coding genes showed bi-modal pattern of expression characterised by low expression in samples obtained from fertile patients and high expressions in infertile patients. Several coding and non-coding MSY-linked genes displayed michrochimerism in form of presence of their respective DNA inserts along with their microarray-detectable expression in endometrium irrespective of fertility history and disease.
Project description:Alterations in endometrial DNA methylation profile have been proposed as one potential mechanism initiating the development of endometriosis. However, the normal endometrial methylome is influenced by the cyclic hormonal changes and the menstrual cycle phase-dependent epigenetic signature should be considered when studying endometrial disorders. So far, no studies have been performed to evaluate the menstrual cycle influences and endometriosis-specific endometrial methylation pattern at the same time. Therefore, we used Infinium HumanMethylation 450K BeadChip arrays to explore DNA methylation profiles of endometrial tissues from various menstrual cycle phases. Infinium HumanMethylation 450K BeadChip arrays were used to explore DNA methylation profiles of endometrial tissues from mid secretory cycle phase from 17 patients without endometriosis
Project description:Alterations in endometrial DNA methylation profile have been proposed as one potential mechanism initiating the development of endometriosis. However, the normal endometrial methylome is influenced by the cyclic hormonal changes and the menstrual cycle phase-dependent epigenetic signature should be considered when studying endometrial disorders. So far, no studies have been performed to evaluate the menstrual cycle influences and endometriosis-specific endometrial methylation pattern at the same time. Therefore, we used Infinium HumanMethylation 450K BeadChip arrays to explore DNA methylation profiles of endometrial tissues from various menstrual cycle phases. Infinium HumanMethylation 450K BeadChip arrays were used to explore DNA methylation profiles of endometrial tissues from various menstrual cycle phases from 24 patients with endometriosis
Project description:We primary cultured ectopic endometrial cells from patients with endometriosis (2 cases) and without endometriosis(2 cases) and collected cell culture supernatants(P0). We isolated exosomes from cell culture supernatants by differential centrifugation and then performed proteome analysis on the two groups of exosomes to investigate the role of ectopic endometrial cell-derived exosomes in the development of endometriosis.
Project description:Alterations in endometrial DNA methylation profile have been proposed as one potential mechanism initiating the development of endometriosis. However, the normal endometrial methylome is influenced by the cyclic hormonal changes and the menstrual cycle phase-dependent epigenetic signature should be considered when studying endometrial disorders. So far, no studies have been performed to evaluate the menstrual cycle influences and endometriosis-specific endometrial methylation pattern at the same time. Therefore, we used Infinium HumanMethylation 450K BeadChip arrays to explore DNA methylation profiles of endometrial tissues from various menstrual cycle phases.
Project description:Alterations in endometrial DNA methylation profile have been proposed as one potential mechanism initiating the development of endometriosis. However, the normal endometrial methylome is influenced by the cyclic hormonal changes and the menstrual cycle phase-dependent epigenetic signature should be considered when studying endometrial disorders. So far, no studies have been performed to evaluate the menstrual cycle influences and endometriosis-specific endometrial methylation pattern at the same time. Therefore, we used Infinium HumanMethylation 450K BeadChip arrays to explore DNA methylation profiles of endometrial tissues from various menstrual cycle phases.
Project description:In this study, we characterize the fusion protein produced by the EPC1-PHF1 translocation in Low Grade Endometrial Stromal Sarcoma (LG-ESS) and Ossifying FibroMyxoid Tumors (OFMT). We express the fusion protein and necessary controls in K562 Cells. The fusion protein assembles a mega-complex harboring both NuA4/TIP60 and PRC2 subunits and enzymatic activities and leads to mislocalization of chromatin marks in the genome, linked to aberrant gene expression.
Project description:It is hypothesized that impaired endometrial decidualization contributes to decreased fertility in endometriosis patients. To identify the molecular defects that underpin defective decidualization in endometriosis, we subjected endometrial stromal cells from healthy individuals or with endometriosis to time course in vitro decidualization with estradiol, progesterone, and 8-bromo-cyclic-AMP (EPC) for 2, 4, 6, or 8 days. Transcriptomic profiling identified novel differences in key pathways between normal and endometriosis, including defective bone morphogenetic protein (BMP) signaling (ID1, ID2, ID3, BMP6), altered iron transport (SLC40A1, TFRC), endometrial stem cell markers (CD44, SUSD2), and retinoid signaling pathways (RORB, ALDH1L1, RARA). Genome-wide binding analyses identified an altered genomic distribution of SMAD4 in decidualized stromal cells from endometriosis patients relative to normal individuals, with an overrepresentation of gene ontologies related to signaling by transforming growth factor β (TGFβ), neurotrophic tyrosine kinase receptors (NTRK), and nerve growth factor (NGF)-stimulated transcription. We found that direct SMAD1/5/4 target genes control FOXO, PI3K/AKT, and progesterone-mediated signaling in decidualizing cells and that BMP2 supplementation of patient-derived assembloids from endometriosis patients restored decidualization. In summary, transcriptomic and genomic profiling of patient-derived endometrial cells and assembloids identified that restoring BMP/SMAD1/5/4 signaling is crucial for engaging a robust decidualization program in women with endometriosis.
Project description:We profiled the transcriptomes of 128, 243 endometrial cells from 6 infertile minimal/mild endometriosis patients and 4 controls. Our results provide new insight of pathogenesis and impaired endometrial receptivity of endometriosis.