ABSTRACT: Comparison of Gene expression profiling of granulosa cells treated with follicle stimulating hormone or constitutively active protein kinase A
Project description:A series of two color gene expression profiles obtained using Agilent 44K expression microarrays was used to examine sex-dependent and growth hormone-dependent differences in gene expression in rat liver. This series is comprised of pools of RNA prepared from untreated male and female rat liver, hypophysectomized (‘Hypox’) male and female rat liver, and from livers of Hypox male rats treated with either a single injection of growth hormone and then killed 30, 60, or 90 min later, or from livers of Hypox male rats treated with two growth hormone injections spaced 3 or 4 hr apart and killed 30 min after the second injection. The pools were paired to generate the following 6 direct microarray comparisons: 1) untreated male liver vs. untreated female liver; 2) Hypox male liver vs. untreated male liver; 3) Hypox female liver vs. untreated female liver; 4) Hypox male liver vs. Hypox female liver; 5) Hypox male liver + 1 growth hormone injection vs. Hypox male liver; and 6) Hypox male liver + 2 growth hormone injections vs. Hypox male liver. A comparison of untreated male liver and untreated female liver liver gene expression profiles showed that of the genes that showed significant expression differences in at least one of the 6 data sets, 25% were sex-specific. Moreover, sex specificity was lost for 88% of the male-specific genes and 94% of the female-specific genes following hypophysectomy. 25-31% of the sex-specific genes whose expression is altered by hypophysectomy responded to short-term growth hormone treatment in hypox male liver. 18-19% of the sex-specific genes whose expression decreased following hypophysectomy were up-regulated after either one or two growth hormone injections. Finally, growth hormone suppressed 24-36% of the sex-specific genes whose expression was up-regulated following hypophysectomy, indicating that growth hormone acts via both positive and negative regulatory mechanisms to establish and maintain the sex specificity of liver gene expression. For full details, see V. Wauthier and D.J. Waxman, Molecular Endocrinology (2008)
Project description:Inhibin α knockout (Inha-/-) female mice develop sex cord-stromal ovarian cancer with complete penetrance and previous studies demonstrate that the pituitary gonadotropins [follicle stimulating hormone (FSH) and luteinizing hormone (LH)] are influential modifiers of granulosa cell tumor development and progression in inhibin-deficient females. Recent studies have demonstrated that Inha-/- ovarian follicles develop precociously to the early antral stage in prepubertal mice without any increase in serum FSH and these studies suggested that in the absence of inhibins, granulosa cells differentiate abnormally, and thus at sexual maturity may undergo an abnormal response to gonadotropin signaling. To test this hypothesis, we stimulated immature WT and Inha-/- female mice prior to gross tumor formation with gonadotropin analogs, and subsequently examined post-gonadotropin induced ovarian follicle development, as well as preovulatory and hCG-induced gene expression changes in granulosa cells. We find that at three weeks of age, inhibin-deficient ovaries do not show further antral development nor undergo cumulus expansion. Widespread alterations in the transcriptome of gonadotropin-treated Inha-/- granulosa cells suggest that gonadotropins initiate an improper program of cell differentiation in Inha-/- cells. Overall, our experiments reveal that inhibins are essential for the normal gonadotropin-dependent response of granulosa cells. (2) Genotypes (WT, Inh KO) collected from 2 preovulatory granulosa cells with and without hCG, in triplicate independent samples
Project description:The process of ovulation includes oocyte meiotic maturation, follicle rupture and transformation of the follicle into a corpus luteum. These events are initiated by the midcycle surge of gonadotropins and require the coordinated regulation of thousands of genes. The aim of the study was to monitor the changes in granulosa cell gene expression across five different time points during the first 36 hours of ovulation until follicle rupture, in order to increase our understanding of the events of human ovulation. We conducted a prospective cohort study including women undergoing ovarian stimulation for fertility treatment. Women were treated in a standard antagonist protocol with individually dosed human menopausal gonadotropin (hMG) or recombinant follicle stimulating hormone (rFSH). Ovulation was induced with either recombinant hCG (rhCG) or gonadotropin releasing hormone agonist (GNRHa). The granulosa cells were collected by transvaginal ultrasound-guided follicle puncture of one follicle at two specific time points during ovulation (repeated measurements), and the study covered a total of five time points: before ovulation induction (OI), 12, 17, 32 and 36 hours after OI.
Project description:FSH is considered as the most critical regulatory factor for follicle growth and development. It is widely acknowledged that exogenous administration of FSH can effectively stimulate ovulation.However, these techniques have several drawbacks such as high cost and detrimental effects on hormone balance and embryo implantation.Sulforaphane (SFN) is a naturally occurring compound that belongs to the isothiocyanate group, which is predominant in cruciferous vegetables.Our previous research demonstrated SFN could inhibit hypoxia-evoked apoptosis in porcine GCs. Intriguingly, SFN exhibits a biphasic dose-response, stimulating cell growth at low doses in various mammalian cells. Therefore,to investigate the functional implications of sulforaphane in the regulation of granulosa cell proliferation, we conducted a gene expression profiling analysis using RNA-seq data, comparing SFN to follicle stimulating hormone (FSH).
Project description:The growth of the mammalian ovarian follicle requires the formation of a fluid filled antrum, and maturation and differentiation of the ovarian granulosa cells, largely under the control of Follicle Stimulating Hormone (FSH). Many follicles will regress and die by a process called atresia at this early antral stage. We therefore decided to analyse the gene expression profiles of granulosa cells cultured in the presence or absence of FSH and Tumour Necrosis Factor-alpha (TNF-alpha), an apoptotic factor, to simulate the key influences. Different concentratons of FSH and TNFa in granulosa culture were used to determine effective conditions via estradiol and progesterone production, and cell number. RNA for the array experiments and quantitative real time PCR was extracted from cells cultured with FSH added at 0.33 and TNF-alpha at 50 ng/ml. Four treatments of : (1) FSH alone, (2) TNF-alpha alone, (3) FSH + TNF-alpha and (4) control = neither drug, with replicates (n=4, except controls n=3 ) were used to generate RNA for the gene expression arrays (n=15)
Project description:The growth of the mammalian ovarian follicle requires the formation of a fluid filled antrum, and maturation and differentiation of the ovarian granulosa cells, largely under the control of Follicle Stimulating Hormone (FSH). Many follicles will regress and die by a process called atresia at this early antral stage. We therefore decided to analyse the gene expression profiles of granulosa cells cultured in the presence or absence of FSH and Tumour Necrosis Factor-alpha (TNFα), an apoptotic factor, to simulate the key influences. Different concentratons of FSH and TNFa in granulosa culture were used to determine effective conditions via estradiol and progesterone production, and cell number. RNA for the array experiments and quantitative real time PCR was extracted from cells cultured with FSH added at 0.33 and TNFα at 50 ng/ml.