Project description:Liver and mammary gland are among the most prominent organs during lactation in dairy cows. With the purpose to understand 1) the adaptation of liver and mammary to different levels of forage/concentrate ration (60:40 vs. 40:60) and 2) the crosstalk between the two organs during lactation, a transcriptome analysis was performed on liver and mammary tissues of 10 primiparous dairy cows in mid-lactation. The analysis was performed using a 4x44K Bovine Agilent microarray chip. The mammary and liver samples were obtained from a subset of animals from a larger experiment where cows were fed two different levels of forage/concentrare ration (Archives of Animal Nutrition, 68:1, 63-71).
Project description:Twelve midlactation cows received 4 diets differing in forage-to-concentrate ration (High (HF) versus Low (LF) forage supplemented or not with lipids (HF with whole intact rapeseeds (HF-RS) and LF with sunflower oil (LF-SO))
Project description:The liver of dairy cows naturally displays a series of metabolic adaptation during the periparturient period in response to the increasing nutrient requirement of lactation. The hepatic adaptation is partly regulated by insulin resistance and it is affected by the prepartal energy intake level of cows. We aimed to investigate the metabolic changes in the liver of dairy cows during the periparturient at gene expression level and to study the effect of prepartal energy level on the metabolic adaptation at gene expression level.B13:N13
Project description:Twelve midlactation cows received 4 diets differing in forage-to-concentrate ration (High (HF) versus Low (LF) forage supplemented or not with lipids (HF with whole intact rapeseeds (HF-RS) and LF with sunflower oil (LF-SO)) 12 cows got into 4 groups, each cow was received 4 different diets in a latin square design Green*txt and Red_*txt raw data files contain Cy3 and Cy5 signal intensities, respectively.
Project description:The aim of this study was to determine the effects of linseed dietary supplementation on gene expression in the mammary gland of grazing dairy cows. Milk composition and gene expression in the mammary gland tissue were evaluated in dairy cows supplemented with linseed. The linseed supplementation improves the health and nutrition quality aspects of dairy milk, but also affects the gene networks expression signature associated with cellular growth and proliferation, cell-death, signalling, nutrient metabolism, and immune response, and in turn, the mammary gland integrity and health. The experiment was carried out in a complete randomized blocked designed structure comprising 14 Holstein-Friesian cows (6 second parity, 2 third parity and 6 older cows), selected from a 550-cow herd. Cows were paired in 7 blocks on the basis of similarity in parity (second parity, third parity and older cows), expected date of calving, and milk performance in the previous lactation (in order of priority). Cows within each block were randomly allocated to one of two treatment groups, “Omega” or “Control”. The dietary Omega treatment consisted of a basal diet supplemented with a concentrate-mixture including linseed on a dry matter (DM) basis, whereas cows in treatment group Control were supplemented with a concentrate mixture without linseed. Linseed was chosen because it is rich in c9,c12,c15-18:3 (ALA). Concentrate mixtures were fed with a concentrate dispenser. Experimental treatments started 3 weeks before the expected calving date (wk -3) and lasted until 6 weeks after calving (wk 6).
Project description:The objective of this study was to characterize the mRNA expression profile in rumen epithelium from Holstein dairy cows fed high or low concentrate dits.
Project description:Liver plays a profound role in the acute phase response (APR) observed in the early phase of acute bovine mastitis caused by Escherichia coli (E. coli). To gain an insight into the genes and pathways involved in hepatic APR of dairy cows we performed a global gene expression analysis of liver tissue sampled at different time points before and after intra-mammary (IM) exposure to E. coli lipopolysaccharide (LPS) treatment. Experiment Overall Design: Eight healthy, high yielding Holstein-Friesian dairy cows in their first lactation (9 to 12 weeks after calving) were chosen for this study. At time 0 the right front quarter was infused with 200 μg E. coli LPS dissolved in 10 ml 0.9% NaCl solution, the left front quarter serving as control was infused with 10 ml 0.9% NaCl solution. Liver biopsies were taken at â22, 3, 6, 9, 12 and 48 hours relative to LPS infusion in 4 cows, and also at â22, 9 and 48 hours in the remaining 4 cows. RNA from liver biopsies was isolated and biotin labeled cRNA was loaded onto the Affymetric GeneChip Bovine Genome Array. A control study using cows infused with 0.9% NaCl showed that there was no effect of taking the biopsy, neither in the clinical measurement nor in the expression of a selected subset of genes. Therefore, only samples taken from the LPS treated cows were measured for the gene expression using microarrays.
Project description:RNA sequencing reveals differential expression of genes associated with an altered morphology of rumen papillae in lactating dairy cows fed diets with various forage sources