Project description:Estrogen Receptor alpha (ERα) is a key driver of most breast cancers, and it is the target of endocrine therapies used in the clinic to treat women with ERα positive (ER+) breast cancer. The two methods ChIP-seq (chromatin immunoprecipitation coupled with deep sequencing) and RIME (Rapid Immunoprecipitation of Endogenous Proteins) have greatly improved our understanding of ERα function during breast cancer progression and in response to anti-estrogens. A critical component of both ChIP-seq and RIME protocols is the antibody that is used to pull down the bait protein. To date, most of the ChIP-seq and RIME experiments for the study of ERα have been performed using the sc-543 antibody from Santa Cruz Biotechnology. However, this antibody has been discontinued, thereby severely impacting the study of ERα in normal physiology as well as diseases such as breast cancer and ovarian cancer. Here, we compare the sc-543 antibody with other commercially available antibodies, and we show that 06-935 (EMD Millipore) and ab3575 (Abcam) antibodies can successfully replace the sc-543 antibody for ChIP-seq and RIME experiments.
Project description:This study is to identify estrogen receptor alpha targeting in liver cancer and breast cancer using RNA-Seq and ChIP-Seq and reveal the mechanisms underlying estrogen receptor alpha in the regulation of liver cancer and breast cancer.
Project description:Estrogen receptor α (ERα) is a key regulator of breast growth and breast cancer development. However, the role of ERα in metabolic reprogramming, a hallmark of cancer, is not well documented. In this study, using an integrated approach combining genome-wide mapping of chromatin bound ERα with estrogen induced transcript and metabolic profiling, we demonstrate that ERα reprograms metabolism upon estrogen stimulation, including changes in aerobic glycolysis, nucleotide and amino acid synthesis, and choline metabolism. We show, for the first time, that the ERα target gene choline phosphotransferase 1 (CHPT1) plays an essential role in estrogen induced increases in phosphatidylcholine (PtdCho) levels and that CHPT1 promotes tumorigenesis and proliferation. Furthermore, we show that CHPT1 is overexpressed in tumors compared to normal breast. We also demonstrate that ERα promotes aerobic glycolysis through increased expression of glycolytic genes. In conclusion, this study highlights the importance of ERα for metabolic alterations in breast cancer cells. Furthermore, overexpression of the ERα target CHPT1 in breast cancer supports its potential as a therapeutic target.
Project description:Estrogen receptor α (ERα) is a key regulator of breast growth and breast cancer development. However, the role of ERα in metabolic reprogramming, a hallmark of cancer, is not well documented. In this study, using an integrated approach combining genome-wide mapping of chromatin bound ERα with estrogen induced transcript and metabolic profiling, we demonstrate that ERα reprograms metabolism upon estrogen stimulation, including changes in aerobic glycolysis, nucleotide and amino acid synthesis, and choline metabolism. We show, for the first time, that the ERα target gene choline phosphotransferase 1 (CHPT1) plays an essential role in estrogen induced increases in phosphatidylcholine (PtdCho) levels and that CHPT1 promotes tumorigenesis and proliferation. Furthermore, we show that CHPT1 is overexpressed in tumors compared to normal breast. We also demonstrate that ERα promotes aerobic glycolysis through increased expression of glycolytic genes. In conclusion, this study highlights the importance of ERα for metabolic alterations in breast cancer cells. Furthermore, overexpression of the ERα target CHPT1 in breast cancer supports its potential as a therapeutic target.