Project description:Affymetrix single nucleotide polymorphism (SNP) array data were used to study genes that underlie human adaptation to climatic stress, with a focus on genetic changes that lead to long-term cold tolerance. Siberia provides the best opportunity to investigate the genetic mechanisms of cold resistance because of the long-term ancestry of indigenous populations in some of the coldest climates on earth. While much of northern Europe was under ice throughout the last glacial period, Siberia remained relatively ice free, and archaeological evidence suggests that people inhabited this region for more than 40,000 years. We gathered SNP data from ~200 individuals from 15 indigenous Siberian populations that inhabit a range of arctic climates and compare their patterns of genetic variation with those from other world populations from warmer climates.Particular attention is paid to regions containing genes that have been previously implicated in cold adaptation or that function in known pathways connected to energy metabolism or cold adapted phenotypes (e.g., those involved in basal metabolic rate and brown adipose tissue function).
Project description:Following the dispersal out of Africa, where hominins evolved in warm environments for millions of years, our species has colonised different climate zones of the world, including high latitudes and cold environments. The extent to which human habitation in (sub-)Arctic regions has been enabled by cultural buffering, short-term acclimatization and genetic adaptations is not clearly understood. Present day indigenous populations of Siberia show a number of phenotypic features, such as increased basal metabolic rate, low serum lipid levels, increased blood pressure, short stature and broad skulls that have been attributed to adaptation to the extreme cold climate. We have genotyped 200 individuals from ten indigenous Siberian populations for 730,525 SNPs across the genome to identify genes and non-coding regions that have undergone unusually rapid allele frequency and long-range haplotype homozygosity change in the recent past. At least three distinct population clusters could be identified among the Siberians, each of which showed a number of unique signals of selection. We present a list of cold adaption candidate genes that showed significant signals of positive selection with our strongest signals associated with genes involved in energy regulation and metabolism (CPT1A, LRP5, THADA) and vascular smooth muscle contraction (PRKG1). By employing a new method that paints phased chromosome chunks by their ancestry we distinguish local Siberian-specific long-range haplotype signals from those introduced by admixture. 200 blood samples from 200 Siberian individuals that come from ten different indigenous populations were genotypes for 730,525 SNPs across the genome. Eighteen Vietnamese samples were also genotyped and used as reference samples.
Project description:Following the dispersal out of Africa, where hominins evolved in warm environments for millions of years, our species has colonised different climate zones of the world, including high latitudes and cold environments. The extent to which human habitation in (sub-)Arctic regions has been enabled by cultural buffering, short-term acclimatization and genetic adaptations is not clearly understood. Present day indigenous populations of Siberia show a number of phenotypic features, such as increased basal metabolic rate, low serum lipid levels, increased blood pressure, short stature and broad skulls that have been attributed to adaptation to the extreme cold climate. We have genotyped 200 individuals from ten indigenous Siberian populations for 730,525 SNPs across the genome to identify genes and non-coding regions that have undergone unusually rapid allele frequency and long-range haplotype homozygosity change in the recent past. At least three distinct population clusters could be identified among the Siberians, each of which showed a number of unique signals of selection. We present a list of cold adaption candidate genes that showed significant signals of positive selection with our strongest signals associated with genes involved in energy regulation and metabolism (CPT1A, LRP5, THADA) and vascular smooth muscle contraction (PRKG1). By employing a new method that paints phased chromosome chunks by their ancestry we distinguish local Siberian-specific long-range haplotype signals from those introduced by admixture.
Project description:We used custom Nimblegen microarrays representing whole-larval transcriptomes for two species (Papilio zelicaon [this submission] and Erynnis propertius [submitted seperately]) to assess gene expression differences affecting tolerance to climatic regimes. Many individuals were sourced from populations from the northern periphery and center of the species' (shared) range; these were each divided into groups treated under peripheral and central climate regimes, resulting in 4 experimental groups for each species (Peripheral Source, Peripheral treatment; Peripheral Source, Central Treatment; Central Source, Peripheral Treatment; Central Source, Central Treatment). Using technical microarray replicates allowed us to use ANOVA to identify genes whose expression may underlie local adaptation to climate (i.e., those showing an interaction term between source and population). Abstract: Population differences may determine geographic range shifts and adaptive evolution under climate change. Local adaptation in peripheral populations could preclude or slow range expansions, and populations with different genetic make-up could have distinct trajectories that produce complex spatial patterns of population change. To investigate the genetic extent of local responses to climate change, we exposed poleward-periphery and central populations of two Lepidoptera to reciprocal, common-garden climatic conditions and compared whole-transcriptome expression. We found significant expression differences between populations in both species. In addition, several hundred genes including genes involved in energy metabolism and oxidative stress responded in a localized fashion in the species that exhibits greater population structure and local adaptation. Expression levels of these genes are most divergent in the same environment in which we previously detected phenotypic divergence in metabolism. By contrast, we found no localized genes in the species with higher gene flow, reflecting the lack of previously observed local adaptation. These results suggest that population differences do not generalize easily, even for related species living in the same climate, but some taxa deserve population-level consideration when predicting the effects of climate change. Previously we sequenced and assembled whole larval transcriptome ESTs sourced from pooled central-population individuals subjected to environmental stressors (see O'Neil et al., 2008). From these assemblies custom Nimblegen microarrays were designed (Nimblegen, Inc.), representing 34,609 putative gene sequences for E. propertius (submitted separately) and 25,735 putative gene sequences for P. zelicaon (this submission). Probe designs sought 5 representative 60mer probes for E.propertius and 4 representative probes for P. zelicaon. Messenger RNA was was sampled from multiple individuals of each experimental group and pooled before being converted to cDNA and hybridized to technical replicate microarrays. Three technical replicates for each experimental group were used, for a total of 12 microarrays (per species). Microarray data were log2 transformed and quintile-normalized (Bolstad et al. 2003) on a per-species basis.
Project description:We used custom Nimblegen microarrays representing whole-larval transcriptomes for two species (Erynnis propertius [this submission] and Papilio zelicaon [submitted seperately]) to assess gene expression differences affecting tolerance to climatic regimes. Many individuals were sourced from populations from the northern periphery and center of the species' (shared) range; these were each divided into groups treated under peripheral and central climate regimes, resulting in 4 experimental groups for each species (Peripheral Source, Peripheral treatment; Peripheral Source, Central Treatment; Central Source, Peripheral Treatment; Central Source, Central Treatment). Using technical microarray replicates allowed us to use ANOVA to identify genes whose expression may underlie local adaptation to climate (i.e., those showing an interaction term between source and population). Abstract: Population differences may determine geographic range shifts and adaptive evolution under climate change. Local adaptation in peripheral populations could preclude or slow range expansions, and populations with different genetic make-up could have distinct trajectories that produce complex spatial patterns of population change. To investigate the genetic extent of local responses to climate change, we exposed poleward-periphery and central populations of two Lepidoptera to reciprocal, common-garden climatic conditions and compared whole-transcriptome expression. We found significant expression differences between populations in both species. In addition, several hundred genes including genes involved in energy metabolism and oxidative stress responded in a localized fashion in the species that exhibits greater population structure and local adaptation. Expression levels of these genes are most divergent in the same environment in which we previously detected phenotypic divergence in metabolism. By contrast, we found no localized genes in the species with higher gene flow, reflecting the lack of previously observed local adaptation. These results suggest that population differences do not generalize easily, even for related species living in the same climate, but some taxa deserve population-level consideration when predicting the effects of climate change. Previously we sequenced and assembled whole larval transcriptome ESTs sourced from pooled central-population individuals subjected to environmental stressors (see O'Neil et al., 2008). From these assemblies custom Nimblegen microarrays were designed (Nimblegen, Inc.), representing 34,609 putative gene sequences for E. propertius (this submission) and 25,735 putative gene sequences for P. zelicaon (submitted seperately). Probe designs sought 5 representative 60mer probes for E.propertius and 4 representative probes for P. zelicaon. Messenger RNA was was sampled from multiple individuals of each experimental group and pooled before being converted to cDNA and hybridized to technical replicate microarrays. Three technical replicates for each experimental group were used, for a total of 12 microarrays (per species). Microarray data were log2 transformed and quintile-normalized (Bolstad et al. 2003) on a per-species basis.
Project description:Kynureninase is a member of a large family of catalytically diverse but structurally homologous pyridoxal 5'-phosphate (PLP) dependent enzymes known as the aspartate aminotransferase superfamily or alpha-family. The Homo sapiens and other eukaryotic constitutive kynureninases preferentially catalyze the hydrolytic cleavage of 3-hydroxy-l-kynurenine to produce 3-hydroxyanthranilate and l-alanine, while l-kynurenine is the substrate of many prokaryotic inducible kynureninases. The human enzyme was cloned with an N-terminal hexahistidine tag, expressed, and purified from a bacterial expression system using Ni metal ion affinity chromatography. Kinetic characterization of the recombinant enzyme reveals classic Michaelis-Menten behavior, with a Km of 28.3 +/- 1.9 microM and a specific activity of 1.75 micromol min-1 mg-1 for 3-hydroxy-dl-kynurenine. Crystals of recombinant kynureninase that diffracted to 2.0 A were obtained, and the atomic structure of the PLP-bound holoenzyme was determined by molecular replacement using the Pseudomonas fluorescens kynureninase structure (PDB entry 1qz9) as the phasing model. A structural superposition with the P. fluorescens kynureninase revealed that these two structures resemble the "open" and "closed" conformations of aspartate aminotransferase. The comparison illustrates the dynamic nature of these proteins' small domains and reveals a role for Arg-434 similar to its role in other AAT alpha-family members. Docking of 3-hydroxy-l-kynurenine into the human kynureninase active site suggests that Asn-333 and His-102 are involved in substrate binding and molecular discrimination between inducible and constitutive kynureninase substrates.
Project description:We used custom Nimblegen microarrays representing whole-larval transcriptomes for two species (Papilio zelicaon [this submission] and Erynnis propertius [submitted seperately]) to assess gene expression differences affecting tolerance to climatic regimes. Many individuals were sourced from populations from the northern periphery and center of the species' (shared) range; these were each divided into groups treated under peripheral and central climate regimes, resulting in 4 experimental groups for each species (Peripheral Source, Peripheral treatment; Peripheral Source, Central Treatment; Central Source, Peripheral Treatment; Central Source, Central Treatment). Using technical microarray replicates allowed us to use ANOVA to identify genes whose expression may underlie local adaptation to climate (i.e., those showing an interaction term between source and population). Abstract: Population differences may determine geographic range shifts and adaptive evolution under climate change. Local adaptation in peripheral populations could preclude or slow range expansions, and populations with different genetic make-up could have distinct trajectories that produce complex spatial patterns of population change. To investigate the genetic extent of local responses to climate change, we exposed poleward-periphery and central populations of two Lepidoptera to reciprocal, common-garden climatic conditions and compared whole-transcriptome expression. We found significant expression differences between populations in both species. In addition, several hundred genes including genes involved in energy metabolism and oxidative stress responded in a localized fashion in the species that exhibits greater population structure and local adaptation. Expression levels of these genes are most divergent in the same environment in which we previously detected phenotypic divergence in metabolism. By contrast, we found no localized genes in the species with higher gene flow, reflecting the lack of previously observed local adaptation. These results suggest that population differences do not generalize easily, even for related species living in the same climate, but some taxa deserve population-level consideration when predicting the effects of climate change.
Project description:We used custom Nimblegen microarrays representing whole-larval transcriptomes for two species (Erynnis propertius [this submission] and Papilio zelicaon [submitted seperately]) to assess gene expression differences affecting tolerance to climatic regimes. Many individuals were sourced from populations from the northern periphery and center of the species' (shared) range; these were each divided into groups treated under peripheral and central climate regimes, resulting in 4 experimental groups for each species (Peripheral Source, Peripheral treatment; Peripheral Source, Central Treatment; Central Source, Peripheral Treatment; Central Source, Central Treatment). Using technical microarray replicates allowed us to use ANOVA to identify genes whose expression may underlie local adaptation to climate (i.e., those showing an interaction term between source and population). Abstract: Population differences may determine geographic range shifts and adaptive evolution under climate change. Local adaptation in peripheral populations could preclude or slow range expansions, and populations with different genetic make-up could have distinct trajectories that produce complex spatial patterns of population change. To investigate the genetic extent of local responses to climate change, we exposed poleward-periphery and central populations of two Lepidoptera to reciprocal, common-garden climatic conditions and compared whole-transcriptome expression. We found significant expression differences between populations in both species. In addition, several hundred genes including genes involved in energy metabolism and oxidative stress responded in a localized fashion in the species that exhibits greater population structure and local adaptation. Expression levels of these genes are most divergent in the same environment in which we previously detected phenotypic divergence in metabolism. By contrast, we found no localized genes in the species with higher gene flow, reflecting the lack of previously observed local adaptation. These results suggest that population differences do not generalize easily, even for related species living in the same climate, but some taxa deserve population-level consideration when predicting the effects of climate change.