Project description:We used trophoblast organoids differentiating to extravillous trophoblast (EVT) to study the effects of key cytokines secreted by uterine Natural Killer (uNK) cells on EVT behaviour. Specifically, we exposed the organoids to four uNK-derived cytokines (CSF1, CSF2, XCL1, CCL5) and collected cells at different time points along the EVT differentiation pathway for scRNA-seq. We observe enhanced EVT differentiation in cytokine-treated organoids demonstrated by the increased proportion of late EVT subtypes and regulation of related pathways such as epithelial-mesenchymal transition. Moreover, uNK cytokines affect other processes important during early pregnancy including dampening of inflammatory and adaptive immune responses, regulation of blood flow, and placental access to nutrients.
Project description:The phenotype of term, human placental extravillous trophoblast (EVT) reflects both the first trimester differentiation from villous cytotrophoblast (CTB) and later gestational changes, including the loss of proliferative and invasive capacity. Invasion abnormalities, as observed in preeclampsia and placenta accreta spectrum, are not usually diagnosed until the second or even third trimester of pregnancy. Characterization of the normal processes at term, including arrest of invasion is therefore crucial. In this report gene expression analysis demonstrates definitively the epithelial-mesenchymal transition (EMT) mechanism which underlies differentiation and provides a trophoblast-specific EMT signature. Methylation profiling shows that CTB, already hypomethylated relative to other somatic cells, show a further degree of hypomethylation in their transition to EVT. A small fraction of genes show both gain of methylation and changes in gene expression. Prominent are genes involved in the EMT such as the transcription factor RUNX1, loss of which leads to reduced migratory capacity in JEG3 trophoblast cells. Examination of these EMT genes leads us to suggest that the gains of methylation may assist in maintaining term EVT in a mesenchymal but non-invasive state.
Project description:The phenotype of term, human placental extravillous trophoblast (EVT) reflects both the first trimester differentiation from villous cytotrophoblast (CTB) and later gestational changes, including the loss of proliferative and invasive capacity. Invasion abnormalities, as observed in preeclampsia and placenta accreta spectrum, are not usually diagnosed until the second or even third trimester of pregnancy. Characterization of the normal processes at term, including arrest of invasion is therefore crucial. In this report gene expression analysis demonstrates definitively the epithelial-mesenchymal transition (EMT) mechanism which underlies differentiation and provides a trophoblast-specific EMT signature. Methylation profiling shows that CTB, already hypomethylated relative to other somatic cells, show a further degree of hypomethylation in their transition to EVT. A small fraction of genes show both gain of methylation and changes in gene expression. Prominent are genes involved in the EMT such as the transcription factor RUNX1, loss of which leads to reduced migratory capacity in JEG3 trophoblast cells. Examination of these EMT genes leads us to suggest that the gains of methylation may assist in maintaining term EVT in a mesenchymal but non-invasive state.
Project description:Gene expression profiling of immortalized human mesenchymal stem cells with hTERT/E6/E7 transfected MSCs. hTERT may change gene expression in MSCs. Goal was to determine the gene expressions of immortalized MSCs.
Project description:Transcriptional profiling of human mesenchymal stem cells comparing normoxic MSCs cells with hypoxic MSCs cells. Hypoxia may inhibit senescence of MSCs during expansion. Goal was to determine the effects of hypoxia on global MSCs gene expression.
Project description:Gene expression profiling of immortalized human mesenchymal stem cells with hTERT/E6/E7 transfected MSCs. hTERT may change gene expression in MSCs. Goal was to determine the gene expressions of immortalized MSCs. One-condition experment, gene expression of 3A6
Project description:Gene methylation profiling of immortalized human mesenchymal stem cells comparing HPV E6/E7-transfected MSCs cells with human telomerase reverse transcriptase (hTERT)- and HPV E6/E7-transfected MSCs. hTERT may increase gene methylation in MSCs. Goal was to determine the effects of different transfected genes on global gene methylation in MSCs.
Project description:Transcriptional profiling of human mesenchymal stem cells comparing normoxic MSCs cells with hypoxic MSCs cells. Hypoxia may inhibit senescence of MSCs during expansion. Goal was to determine the effects of hypoxia on global MSCs gene expression. Two-condition experiment, Normoxic MSCs vs. Hypoxic MSCs.