Project description:The bTB research programme is centred on identifying the genetic basis for resistance against bovine tuberculosis and towards diagnostics
Project description:The bTB research programme is centred on identifying the genetic basis for resistance against bovine tuberculosis and towards diagnostics Agilent Whole Genome Bovine 8x60k Gene Expression (AMADID: 29411) , Labeling kit: Agilent Quick-Amp labeling Kit (p/n5190-0442)
Project description:Micro RNA profiling was performed on in vitro PPDB and nil stimulated bovine PBMCs isolated from BCG vaccinated and unvaccinated cattle before and after challenge with M. bovis.
Project description:Background: Mycobacterium bovis is the causative agent of bovine tuberculosis (BTB), a pathological infection with significant economic impact. Recent studies have highlighted the role of functional genomics to better understand the molecular mechanisms governing the host immune response to M. bovis infection. Furthermore, these studies may enable the identification of novel transcriptional markers of BTB that can augment current diagnostic tests and surveillance programmes. In the present study, we have analysed the transcriptome of peripheral blood leukocytes (PBL) from eight M. bovis-infected and eight control non-infected age-matched and sex-matched Holstein-Friesian cattle using the Affymetrix® GeneChip® Bovine Genome Array with features representing more than 23,000 gene transcripts and over 19,000 gene probe sets. Results: Control and infected animals had similar mean white blood cell counts. However, the mean number of lymphocytes was significantly increased in the infected group relative to the control group (P = 0.001), while the mean number of monocytes was significantly decreased in the BTB group (P = 0.002). Hierarchical clustering analysis using gene expression data from all 5,388 detectable mRNA transcripts unambiguously partitioned the animals according to their disease status. In total, 2,960 gene transcripts were differentially expressed (DE) between the infected and control animal groups (adjusted P-value threshold ≤ 0.05); with the number of genes showing decreased relative expression (1,563) exceeding those displaying increased relative expression (1,397). Systems analysis using the Ingenuity Systems Pathway Analysis (IPA) Knowledge Base revealed an over-representation of DE genes involved in the immune response functional category. More specifically, 64.5% of genes in the affects immune response subcategory displayed decreased relative expression levels in the infected animals compared to the control group. Conclusions: This study demonstrates that genome-wide transcriptional profiling of PBL can distinguish active M. bovis-infected animals from control non-infected animals. Furthermore, the results obtained support previous investigations demonstrating that mycobacterial infection is associated with host transcriptional suppression. These data support the use of transcriptomic technologies to enable the identification of robust, reliable transcriptional markers of active M. bovis infection Affymetrix GeneChip® Bovine Genome Arrays were used to examine gene expression of peripheral blood leukocytes from cattle infected with Mycobacterium bovis
Project description:Background: Bovine tuberculosis is an enduring disease of cattle that has significant repercussions for human health. The advent of high-throughput functional genomics technologies has facilitated large-scale analyses of the immune response to this disease that will ultimately lead to novel diagnostics and therapeutic targets. Analysis of mRNA abundance in peripheral blood mononuclear cells (PBMC) from six Mycobacterium bovis infected cattle and six non-infected controls was performed. A targeted immunospecific bovine cDNA microarray with duplicated spot features representing 1,391 genes was used to test the hypothesis that a novel gene expression profile may exist in M. bovis infected animals in vivo. Results: In total, 378 gene features were differentially expressed at the P ≤ 0.05 level in bovine tuberculosis (BTB)-infected and control animals, of which 244 were expressed at lower levels (65%) in the infected group. Lower relative expression of key innate immune genes such as the Toll-like receptor 2 (TLR2) and TLR4 genes, lack of differential expression of indicator adaptive immune gene transcripts (IFNG, IL2, IL4), and lower BOLA major histocompatability complex – class I (BOLA) and class II (BOLA-DRA) gene expression was consistent with innate immune gene repression in the BTB-infected animals. Supervised hierarchical cluster analysis and class prediction validation identified a panel of 15 genes predictive of disease status and selected gene transcripts were validated (n = 8 per group) by real time quantitative reverse transcription PCR. Conclusion: These results suggest that large-scale expression profiling can identify gene signatures of disease in peripheral blood that can be used to classify animals on the basis of in vivo infection, in the absence of exogenous antigenic stimulation. Keywords: Disease state analysis
Project description:Abstract: Bovine tuberculosis (bTB), caused by infection with Mycobacterium bovis, continues to cause significant issues for the global agriculture industry as well as for human health. An incomplete understanding of the host immune response contributes to the challenges of control and eradication of this zoonotic disease. In this study, high-throughput bulk RNA sequencing (RNA-seq) was used to characterize differential gene expression in γδ T cells – a subgroup of T cells which bridge innate and adaptive immunity and have specific anti-mycobacterial response mechanisms. γδ T cell subsets are classified on the basis of expression of a pathogen-recognition receptor known as Workshop Cluster 1 (WC1) and we hypothesised that bTB infection may alter the phenotype and function of specific γδ T cell subsets. Peripheral blood was collected from naturally M. bovis-infected (positive for single intradermal comparative tuberculin test (SICTT) and IFN-γ ELISA) and age- and sex-matched, non-infected control Holstein-Friesian cattle. γδ T subsets were isolated using fluorescence activated cell sorting (n = 10-12 per group) and high-quality RNA extracted from each purified lymphocyte subset (WC1.1+, WC1.2+, WC1- and γδ-) was used to generate transcriptomes using bulk RNA-seq (n = 6 per group, representing a total of 48 RNA-seq libraries). Relatively low numbers of differentially expressed genes (DEGs) were observed between most cell subsets; however, 163 genes were significantly differentially expressed in the M. bovis-infected compared to control groups for the WC1.1+ γδ T cell compartment (Log 2 FC ≥ 1.5 and FDR P adj ≤ 0.1). The majority of these DEGs (146) were significantly increased in expression in cells from the bTB+ cattle and included genes encoding transcription factor (TBX21 and EOMES), chemokine receptors (CCR5 and CCR7), granzymes (GZMA, GZMM and GZMH) and multiple killer cell immunoglobulin-like receptors (KIR) indicating cytotoxic functions. Biological pathway overrepresentation analysis revealed enrichment of genes with multiple immune functions including cell activation, proliferation, chemotaxis and cytotoxicity of lymphocytes. In conclusion, WC1.1+ γδ T cells have been proposed as major regulatory cell subset in cattle, and we provide evidence for preferential differential activation of this specific subset in cattle naturally infected with M. bovis. Understanding the role of these critical immune cells during mycobacterial infection contributes to our understanding of host immunity to bTB and identifies multiple novel cytotoxic functions of WC1.1+ γδ T cells.
Project description:Background: Mycobacterium bovis is the causative agent of bovine tuberculosis (BTB), a pathological infection with significant economic impact. Recent studies have highlighted the role of functional genomics to better understand the molecular mechanisms governing the host immune response to M. bovis infection. Furthermore, these studies may enable the identification of novel transcriptional markers of BTB that can augment current diagnostic tests and surveillance programmes. In the present study, we have analysed the transcriptome of peripheral blood leukocytes (PBL) from eight M. bovis-infected and eight control non-infected age-matched and sex-matched Holstein-Friesian cattle using the Affymetrix® GeneChip® Bovine Genome Array with features representing more than 23,000 gene transcripts and over 19,000 gene probe sets. Results: Control and infected animals had similar mean white blood cell counts. However, the mean number of lymphocytes was significantly increased in the infected group relative to the control group (P = 0.001), while the mean number of monocytes was significantly decreased in the BTB group (P = 0.002). Hierarchical clustering analysis using gene expression data from all 5,388 detectable mRNA transcripts unambiguously partitioned the animals according to their disease status. In total, 2,960 gene transcripts were differentially expressed (DE) between the infected and control animal groups (adjusted P-value threshold ≤ 0.05); with the number of genes showing decreased relative expression (1,563) exceeding those displaying increased relative expression (1,397). Systems analysis using the Ingenuity Systems Pathway Analysis (IPA) Knowledge Base revealed an over-representation of DE genes involved in the immune response functional category. More specifically, 64.5% of genes in the affects immune response subcategory displayed decreased relative expression levels in the infected animals compared to the control group. Conclusions: This study demonstrates that genome-wide transcriptional profiling of PBL can distinguish active M. bovis-infected animals from control non-infected animals. Furthermore, the results obtained support previous investigations demonstrating that mycobacterial infection is associated with host transcriptional suppression. These data support the use of transcriptomic technologies to enable the identification of robust, reliable transcriptional markers of active M. bovis infection
Project description:The immune response associated with mastitis caused by Mycoplasma bovis is a very complicated biological process in several type of cells, including immune cells, mammary epithelial cells and, endothelial cells. Thus, revealing of the microRNAs in the Mycoplasma bovis infected mammary gland tissues is particularly important for the immune response mechanism to Mycoplasma bovis. Firstly, mammary gland tissue samples were collected from Holstein cows and screened for Mycoplasma bovis. Then, total RNA was isolated from mycoplasma bovis infected tissues and RNA sequencing was performed. After bioinformatics analysis, GO and KEGG analysis of target genes of identified microRNAs were conducted. Our results revaled that 24 of the known microRNAs were expressed differently and 13 of the novel microRNAs were expressed differently in Mycoplasma bovis positive tissues. The target genes of these microRNAs were found to be associated with especially inflammation pathways. In conclusion, this study demonstrated that identified miRNAs may be involved in the signaling pathways during mastitis case caused by Mycoplasma bovis.
Project description:Mycobacterium bovis (M. bovis) and Mycobacterium avium subspecies paratuberculosis (MAP) are important pathogens of cattle, causing bovine tuberculosis and Johne’s disease respectively. M. bovis and MAP infect residential macrophages in the lung and intestines respectively and subvert the macrophage biology to create a survival niche. To investigate this interaction we simultaneously studied the transcriptional response of bovine monocyte-derived macrophages to infection with two strains of M. bovis (AF2122/97 and G18) and two strains of MAP (C & L1).