Project description:Paenibacillus polymyxa is an agriculturally important plant growth promoting rhizobacterium (PGPR). Many Paenibacillus species are known to be engaged in complex bacteria-bacteria and bacteria-host interactions, which in other bacteria were shown to necessitate quorum sensing communication, but to date no quorum sensing systems have been described in Paenibacillus. Here we show that the type strain P. polymyxa ATCC 842 encodes at least 16 peptide-based communication systems. Each of these systems comprises a pro-peptide that is secreted to the growth medium and further processed to generate a mature short peptide. Each peptide has a cognate intracellular receptor of the RRNPP family, and we show that external addition of P. polymyxa communication peptides to the medium leads to reprogramming of the transcriptional response. We found that these quorum sensing systems are conserved across hundreds of species belonging to the Paenibacillaceae family, with some species encoding more than 25 different peptide-receptor pairs, representing a record number of quorum sensing systems encoded in a single genome.
Project description:This study was aimed to elucidate a global antigenic profile of Mycoplasma bovis (M. bovis) with immunoproteomics, immunoinformatics, and gene expression approaches. The extracts of whole-cell proteins and TX-114 membrane fraction of a Chinese strain M. bovis HB0801 were separated with two dimensional gel electrophoresis (2-DE) and proteins reacting with antisera to M. bovis from experimentally infected calves were detected by MALDI-TOF MS.
Project description:Geographical distinct virulent Babesia bovis strains have similar gene expression changes as they go through attenuation. Pair end RNA-sequencing reads on three biological replicate sample pairs of virulent parent and attenuated derivative Babesia bovis strain isolated in Argentina.