Project description:This work describes the molecular mechanisms of meiotic maturation and cell cycle in the starfish Astropecten Aranciacus. The study has been conducted assembling a de-novo transcriptome from the different cellular stages: oocytes, egg, zygote and early embryos. Differential expression analysis followed by rtPCR are used to assess the validity of the assembly.
Project description:Co-expression networks and gene regulatory networks (GRNs) are emerging as important tools for predicting the functional roles of individual genes at a system-wide scale. To enable network reconstructions we built a large-scale gene expression atlas comprised of 62,547 mRNAs, 17,862 non-modified proteins, and 6,227 phosphoproteins harboring 31,595 phosphorylation sites quantified across maize development. There was little edge conservation in co-expression and GRNs reconstructed using transcriptome versus proteome data yet networks from either data type were enriched in ontological categories and effective in predicting known regulatory relationships. This integrated gene expression atlas provides a valuable community resource. The networks should facilitate plant biology research and they provide a conceptual framework for future systems biology studies highlighting the importance of studying gene regulation at several levels.
Project description:Co-expression networks and gene regulatory networks (GRNs) are emerging as important tools for predicting the functional roles of individual genes at a system-wide scale. To enable network reconstructions we built a large-scale gene expression atlas comprised of 62,547 mRNAs, 17,862 non-modified proteins, and 6,227 phosphoproteins harboring 31,595 phosphorylation sites quantified across maize development. There was little edge conservation in co-expression and GRNs reconstructed using transcriptome versus proteome data yet networks from either data type were enriched in ontological categories and effective in predicting known regulatory relationships. This integrated gene expression atlas provides a valuable community resource. The networks should facilitate plant biology research and they provide a conceptual framework for future systems biology studies highlighting the importance of studying gene regulation at several levels.