Project description:Different single mutations on the same sarcomeric gene often cause distinct cardiomyopathy phenotypes as dilated (DCM) or hypertrophic cardiomyopathy (HCM). The key factors involved in this disease divergence is unknown and could be key for disease intervention.We generated isogenic familial DCM and HCM disease-specific human embryonic stem cells (hESCs) carrying the cTnT-DK210 and -DE160 mutation, respectively. Whole transcriptomic RNA-sequencing was used to identify the key gene involved in the earliest disease divergence of cTnT-DK210 caused DCM and cTnT-DE160 caused HCM. Results provide insight into the new molecular mechanisms underlying familial dilated cardiomyopathy.
Project description:Phospholamban R14del mutazion (PLN-R14del) has been identified in a large family pedigree in which heterozygous carriers exhibited inherited dilated cardiomyopathy (DCM) and death by middle age. To better understand the causal link between the mutations in PLN and DCM pathology, we derived induced pluripotent stem cells from a DCM patient carrying the PLN R14del mutation. We showed that iPSC-derived cardiomyocytes recapitulated the DCM-specific phenotype and demonstrated that either TALEN-mediated genetic correction or combinatorial gene therapy resulted in phenotypic rescue. Our findings offer novel insights into the pathogenesis caused by mutant PLN and point to the development of potential new therapeutics of pathogenic genetic variants associated with inherited cardiomyopathies. iPSCs were derived from a female patient carrying a heterozygous mutation (R14del) in the PLN gene. Tree samples were analyzed: Cardiomyocytes derived from PLN-R41del iPSC cells (R14del-CM); R14del-CMs infected with AAV6-EGFP-miR-PLN and R14del-CMs infected with AAV6-EGFP-miR-luc used as a negative control
Project description:Phospholamban R14del mutazion (PLN-R14del) has been identified in a large family pedigree in which heterozygous carriers exhibited inherited dilated cardiomyopathy (DCM) and death by middle age. To better understand the causal link between the mutations in PLN and DCM pathology, we derived induced pluripotent stem cells from a DCM patient carrying the PLN R14del mutation. We showed that iPSC-derived cardiomyocytes recapitulated the DCM-specific phenotype and demonstrated that either TALEN-mediated genetic correction or combinatorial gene therapy resulted in phenotypic rescue. Our findings offer novel insights into the pathogenesis caused by mutant PLN and point to the development of potential new therapeutics of pathogenic genetic variants associated with inherited cardiomyopathies. Submitter confirms there are no patient privacy concerns with these data. iPSCs were derived from a female patient carrying a heterozygous mutation (R14del) in the PLN gene. Tree samples were analyzed: R14del-CMs (clone L2), corrected R14del-CMs (clone L2GC1) and corrected R14del-CMs (clone L2GC2)
Project description:Phospholamban R14del mutazion (PLN-R14del) has been identified in a large family pedigree in which heterozygous carriers exhibited inherited dilated cardiomyopathy (DCM) and death by middle age. To better understand the causal link between the mutations in PLN and DCM pathology, we derived induced pluripotent stem cells from a DCM patient carrying the PLN R14del mutation. We showed that iPSC-derived cardiomyocytes recapitulated the DCM-specific phenotype and demonstrated that either TALEN-mediated genetic correction or combinatorial gene therapy resulted in phenotypic rescue. Our findings offer novel insights into the pathogenesis caused by mutant PLN and point to the development of potential new therapeutics of pathogenic genetic variants associated with inherited cardiomyopathies.
Project description:A novel ppp1r13l sequence variation causes dilated cardiomyopathy and cardiac inflammation. This experiment explores the transcriptome of wa3 mice hearts which are carry deletion and insertion mutations in exon 12 of the Ppp1r13l gene that generate premature stop codon, and exhibit dilated cardio myopathy in a similar manner to a novel human mutation that was recently dicovered.
Project description:Phospholamban R14del mutazion (PLN-R14del) has been identified in a large family pedigree in which heterozygous carriers exhibited inherited dilated cardiomyopathy (DCM) and death by middle age. To better understand the causal link between the mutations in PLN and DCM pathology, we derived induced pluripotent stem cells from a DCM patient carrying the PLN R14del mutation. We showed that iPSC-derived cardiomyocytes recapitulated the DCM-specific phenotype and demonstrated that either TALEN-mediated genetic correction or combinatorial gene therapy resulted in phenotypic rescue. Our findings offer novel insights into the pathogenesis caused by mutant PLN and point to the development of potential new therapeutics of pathogenic genetic variants associated with inherited cardiomyopathies. Submitter confirms there are no patient privacy concerns with these data.
2015-02-09 | GSE65762 | GEO
Project description:Whole-exome sequencing identified variants in Chinese patients with Dilated cardiomyopathy type-2D
Project description:Importantly, mutations in nuclear envelope-encoding genes are the second-highest cause of familial dilated cardiomyopathy. One such nuclear envelope protein that causes cardiomyopathy in humans and affects mouse heart development is Lem2. However, its role in mechanically active tissue such as heart remains poorly understood.
2023-09-13 | GSE217693 | GEO
Project description:Exome sequencing of dilated cardiomyopathy