Project description:Background: Precise spatiotemporal control of gene expression is essential for the establishment of correct cell numbers and identities during brain development. This process involves epigenetic control mechanisms, such as those mediated by the polycomb group protein Ezh2 that catalyzes trimethylation of histone H3K27 (H3K27me3) and thereby represses gene expression. Results: Here we show that Ezh2 plays a crucial role in development and maintenance of the midbrain. Conditional deletion of Ezh2 in the developing midbrain resulted in decreased neural progenitor proliferation, which is associated with derepression of cell cycle inhibitors and negative regulation of Wnt/β-catenin signaling. Of note, Ezh2 ablation also promoted ectopic expression of a forebrain transcriptional program involving derepression of the forebrain determinants Foxg1 and Pax6. This was accompanied by reduced expression of midbrain markers, including Pax3 and Pax7, as a consequence of decreased Wnt/β-catenin signaling. Conclusion: Ezh2 is required for appropriate brain growth and for maintenance of regional identity by H3K27me3-mediated gene repression and control of canonical Wnt signaling.
Project description:Background: Precise spatiotemporal control of gene expression is essential for the establishment of correct cell numbers and identities during brain development. This process involves epigenetic control mechanisms, such as those mediated by the polycomb group protein Ezh2 that catalyzes trimethylation of histone H3K27 (H3K27me3) and thereby represses gene expression. Results: Here we show that Ezh2 plays a crucial role in development and maintenance of the midbrain. Conditional deletion of Ezh2 in the developing midbrain resulted in decreased neural progenitor proliferation, which is associated with derepression of cell cycle inhibitors and negative regulation of Wnt/beta-catenin signaling. Of note, Ezh2 ablation also promoted ectopic expression of a forebrain transcriptional program involving derepression of the forebrain determinants Foxg1 and Pax6. This was accompanied by reduced expression of midbrain markers, including Pax3 and Pax7, as a consequence of decreased Wnt/beta-catenin signaling. Conclusion: Ezh2 is required for appropriate brain growth and for maintenance of regional identity by H3K27me3-mediated gene repression and control of canonical Wnt signaling. After tissue isolation from dorsal midbrains of embryonic day (E) 10.5 embryos, total RNA was isolated with the RNAeasy kit (Qiagen) and RNase-Free DNase Set (79254, Qiagen) following the manufacturer's instructions. Isolated total RNA of E10.5 control (n=3, from 2 different litters) and Ezh2 cko (n=3, from 2 different litters) dorsal midbrains was used for microarray analysis performed at the Functional Genomics Center Zurich (FGCZ), Switzerland, using the Affymetrix A430 platform.
Project description:Epigenetic regulators are often hijacked by cancer cells to sustain and enhance their malignant phenotypes. Co-opted proteins are typically not mutated and their intrinsic properties remain unaltered. How cancer cells repurpose key regulators of cell identity as tumour-promoting factors is unclear. The antithetic role of the Polycomb component EZH2 in normal brain and glioma provides a paradigm to dissect how wild-type chromatin modifiers gain a pathological function in cancer. In this study, we show that oncogenic signalling induces redistribution of EZH2 across the genome, which in turn misregulates key homeotic genes and corrupts the identity of neural cells. Characterisation of EZH2 direct targets in de novo transformed cells reveals that acquisition of tumorigenic potential is accompanied by a transcriptional switch involving de-repression of spinal cord-specifying HOX genes and concomitant silencing of the empty spiracles homologue EMX2, a key regulator of neurogenesis in the forebrain and negative regulator of neural stem cell proliferation. Our results suggest that by redistributing EZH2 across the genome, cancer cells subvert developmental transcriptional programs that specify normal cell identity and remove physiological breaks that normally restrain cell proliferation.
Project description:Epigenetic regulators are often hijacked by cancer cells to sustain and enhance their malignant phenotypes. Co-opted proteins are typically not mutated and their intrinsic properties remain unaltered. How cancer cells repurpose key regulators of cell identity as tumour-promoting factors is unclear. The antithetic role of the Polycomb component EZH2 in normal brain and glioma provides a paradigm to dissect how wild-type chromatin modifiers gain a pathological function in cancer. In this study, we show that oncogenic signalling induces redistribution of EZH2 across the genome, which in turn misregulates key homeotic genes and corrupts the identity of neural cells. Characterisation of EZH2 direct targets in de novo transformed cells reveals that acquisition of tumorigenic potential is accompanied by a transcriptional switch involving de-repression of spinal cord-specifying HOX genes and concomitant silencing of the empty spiracles homologue EMX2, a key regulator of neurogenesis in the forebrain and negative regulator of neural stem cell proliferation. Our results suggest that by redistributing EZH2 across the genome, cancer cells subvert developmental transcriptional programs that specify normal cell identity and remove physiological breaks that normally restrain cell proliferation.
Project description:Adult-onset diseases can be associated with in utero events, but mechanisms for such temporally distant dysregulation of organ function remain unknown. The polycomb histone methyltransferase, Ezh2, stabilizes transcription by depositing repressive histone marks during development that persist into adulthood, but the function of Ezh2-mediated transcriptional stability in postnatal organ homeostasis is not understood. Here, we show that Ezh2 stabilizes the postnatal cardiac gene expression program and prevents cardiac pathology, primarily by repressing the homeodomain transcription factor Six1 in differentiating cardiac progenitors. Loss of Ezh2 in embryonic cardiac progenitors, but not in differentiated cardiomyocytes, resulted in postnatal cardiac pathology, including cardiomyocyte hypertrophy and fibrosis. Loss of Ezh2 caused broad derepression of skeletal muscle genes, including the homeodomain transcription factor Six1, which is expressed in cardiac progenitors but is normally silenced upon cardiac differentiation. Many of the deregulated genes are direct Six1 targets, implying a critical requirement for stable repression of Six1 in cardiac myocytes. Indeed, upon de-repression, Six1 promotes cardiac pathology, as it was sufficient to induce cardiac hypertrophy. Furthermore, genetic reduction of Six1 levels almost completely rescued the pathology of Ezh2-deficient hearts. Thus, repression of a single transcription factor in cardiac progenitors by Ezh2 is essential for stability of the adult heart gene expression program and homeostasis. Our results suggest that epigenetic dysregulation during discrete developmental windows can predispose to adult disease and dysregulated stress responses. Global gene expression profiles of Ezh2-deficient hearts. The right ventricle and the interventricular septum of five wild type (Ezh2f/f) and four Ezh2-deficient (Ezh2f/f;Mef2cAHF::Cre) mice were analyzed.
Project description:The process that partitions the nascent vertebrate central nervous system into forebrain, midbrain, hindbrain, and spinal cord after neural induction is of fundamental interest in developmental biology, and is known to be dependent on Wnt/beta-catenin signaling at multiple steps. Neural induction specifies neural ectoderm with forebrain character that is subsequently posteriorized by graded Wnt signaling: embryological and mutant analyses have shown that progressively higher levels of Wnt signaling induce progressively more posterior fates. However, the mechanistic link between Wnt signaling and the molecular subdivision of the neural ectoderm into distinct domains in the anteroposterior (AP) axis is still not clear. To better understand how Wnt mediates neural AP patterning, we performed a temporal dissection of neural patterning in response to manipulations of Wnt signaling in zebrafish. We show that Wnt-mediated neural patterning in zebrafish can be divided into three phases: (I) a primary AP patterning phase, which occurs during gastrulation, (II) a mes/r1 (mesencephalon-rhombomere 1) specification and refinement phase, which occurs immediately after gastrulation, and (III) a midbrain-hindbrain boundary (MHB) morphogenesis phase, which occurs during segmentation stages. A major outcome of these Wnt signaling phases is the specification of the major compartment divisions of the developing brain: first the MHB, then the diencephalic-mesencephalic boundary (DMB). The specification of these lineage divisions depends upon the dynamic changes of gene transcription in response to Wnt signaling, which we show primarily involves transcriptional repression or indirect activation. We show that otx2b is directly repressed by Wnt signaling during primary AP patterning, but becomes resistant to Wnt-mediated repression during late gastrulation. Also during late gastrulation, Wnt signaling becomes both necessary and sufficient for expression of wnt8b, en2a, and her5 in mes/r1. We suggest that the change in otx2b response to Wnt regulation enables a transition to the mes/r1 phase of Wnt-mediated patterning, as it ensures that Wnts expressed in the midbrain and MHB do not suppress midbrain identity, and consequently reinforce formation of the DMB. These findings integrate important temporal elements into our spatial understanding of Wnt-mediated neural patterning and may serve as an important basis of a better understanding of neural patterning defects that have implications in human health.
Project description:The Wnt/b-catenin signaling inhibits adipogenesis. Genome-wide profiling studies have revealed the enrichment of histone H3K27 methyltransferase PRC2 on Wnt genes. However, the functional significance of such a direct link between the two types of developmental regulators in mammalian cells, and the role of PRC2 in adipogenesis, remain unclear. Here we show PRC2 and its H3K27 methyltransferase activity are required for adipogenesis. PRC2 directly represses Wnt1, 6, 10a and 10b genes in preadipocytes and during adipogenesis. Deletion of the enzymatic Ezh2 subunit of PRC2 eliminates H3K27me3 on Wnt promoters and de-represses Wnt expression, which leads to activation of Wnt/b-catenin signaling and inhibition of adipogenesis. Ectopic expression of the wild type Ezh2, but not the enzymatically inactive F667I mutant, prevents the loss of H3K27me3 and the defects in adipogenesis in Ezh2-/- preadipocytes. The adipogenesis defects in Ezh2-/- cells can be rescued by expression of adipogenic transcription factors PPARa, C/EBPb, or inhibitors of Wnt/b-catenin signaling. Interestingly, Ezh2-/- cells show marked increase of H3K27 acetylation globally as well as on Wnt promoters. These results indicate that H3K27 methyltransferase PRC2 directly represses Wnt genes to facilitate adipogenesis, and suggest that acetylation and trimethylation on H3K27 play opposing roles in regulating Wnt expression. To identify additional PRC2-regulated genes in preadipocytes, we performed microarray analysis in Ezh2flox/flox preadipocytes infected with retroviruses expressing Cre or vector alone.
Project description:Adult-onset diseases can be associated with in utero events, but mechanisms for such temporally distant dysregulation of organ function remain unknown. The polycomb histone methyltransferase, Ezh2, stabilizes transcription by depositing repressive histone marks during development that persist into adulthood, but the function of Ezh2-mediated transcriptional stability in postnatal organ homeostasis is not understood. Here, we show that Ezh2 stabilizes the postnatal cardiac gene expression program and prevents cardiac pathology, primarily by repressing the homeodomain transcription factor Six1 in differentiating cardiac progenitors. Loss of Ezh2 in embryonic cardiac progenitors, but not in differentiated cardiomyocytes, resulted in postnatal cardiac pathology, including cardiomyocyte hypertrophy and fibrosis. Loss of Ezh2 caused broad derepression of skeletal muscle genes, including the homeodomain transcription factor Six1, which is expressed in cardiac progenitors but is normally silenced upon cardiac differentiation. Many of the deregulated genes are direct Six1 targets, implying a critical requirement for stable repression of Six1 in cardiac myocytes. Indeed, upon de-repression, Six1 promotes cardiac pathology, as it was sufficient to induce cardiac hypertrophy. Furthermore, genetic reduction of Six1 levels almost completely rescued the pathology of Ezh2-deficient hearts. Thus, repression of a single transcription factor in cardiac progenitors by Ezh2 is essential for stability of the adult heart gene expression program and homeostasis. Our results suggest that epigenetic dysregulation during discrete developmental windows can predispose to adult disease and dysregulated stress responses.
Project description:The canonical Wnt signaling pathway is critical for myogenesis and can induce muscle progenitors to switch from proliferation to differentiation; how Wnt signals integrate with muscle specific regulatory factors in this process is poorly understood. We previously demonstrated that the Barx2 homeobox protein promotes differentiation in cooperation with the muscle regulatory factor (MRF) MyoD. Pax7, another important muscle homeobox factor represses differentiation. We now identify Barx2,MyoD,and Pax7 as novel components of the Wnt effector complex, providing a new molecular pathway for regulation of muscle progenitor differentiation. Canonical Wnt signaling induces Barx2 expression in muscle progenitors and perturbation of Barx2 leads to misregulation of Wnt target genes. Barx2 activates two endogenous Wnt target promoters as well as the Wnt reporter gene TOPflash, the latter synergistically with MyoD. Moreover, Barx2 interacts with the core Wnt effectors β-catenin and TCF, is recruited to TCF/LEF sites, and promotes recruitment of β-catenin. In contrast, Pax7 represses the Wnt reporter gene and antagonizes the activating effect of Barx2. Pax7 also binds β-catenin suggesting that Barx2 and Pax7 may compete for interaction with the core Wnt effector complex. Overall, the data show for the first time that Barx2, Pax7, and MRFs can act as direct transcriptional effectors of Wnt signals in myoblasts and that Barx2 and Wnt signaling participate in a regulatory loop. We propose that antagonism between Barx2 and Pax7 in regulation of Wnt signaling may help mediate the switch from myoblast proliferation to differentiation. RNA-Seq analyses was used to characterize gene expression in primary myoblasts from wild-type and Barx2 knockout mice.
Project description:The Wnt/b-catenin signaling inhibits adipogenesis. Genome-wide profiling studies have revealed the enrichment of histone H3K27 methyltransferase PRC2 on Wnt genes. However, the functional significance of such a direct link between the two types of developmental regulators in mammalian cells, and the role of PRC2 in adipogenesis, remain unclear. Here we show PRC2 and its H3K27 methyltransferase activity are required for adipogenesis. PRC2 directly represses Wnt1, 6, 10a and 10b genes in preadipocytes and during adipogenesis. Deletion of the enzymatic Ezh2 subunit of PRC2 eliminates H3K27me3 on Wnt promoters and de-represses Wnt expression, which leads to activation of Wnt/b-catenin signaling and inhibition of adipogenesis. Ectopic expression of the wild type Ezh2, but not the enzymatically inactive F667I mutant, prevents the loss of H3K27me3 and the defects in adipogenesis in Ezh2-/- preadipocytes. The adipogenesis defects in Ezh2-/- cells can be rescued by expression of adipogenic transcription factors PPARa, C/EBPb, or inhibitors of Wnt/b-catenin signaling. Interestingly, Ezh2-/- cells show marked increase of H3K27 acetylation globally as well as on Wnt promoters. These results indicate that H3K27 methyltransferase PRC2 directly represses Wnt genes to facilitate adipogenesis, and suggest that acetylation and trimethylation on H3K27 play opposing roles in regulating Wnt expression.