Project description:This study used virological, histological, immunological and global gene expression to compare the virlence of two newly emerged 2009 H1N1 isolates (A/Mexico/InDRE4487/2009 and A/Mexico/4108/2009) and current seasonal H1N1 influenza strain (A/Kawasaki/UTK-4/2009) in experimentally infected cynomolgus macaques. We showed that infection of macaques with two genetically similar but clinically distinct SOIV isolates from the early stage of the pandemic (A/Mexico/4108/2009 and A/Mexico/InDRE4487/2009) resulted in upper and lower respiratory tract infections and clinical disease ranging from mild to severe pneumonia. Disease associated with these SOIV isolates was clearly advanced over the mild infection caused by A/Kawasaki/UTK-4/2009, a current seasonal strain.
Project description:We performed small RNA sequencing on recently colonized female Aedes aegypti from Mexico and Brazil. We compare small RNA profiles in midguts and abdomens (without ovaries) either non-bloodfed or 48 hours post non-infectious bloodmeal.
Project description:This study used virological, histological, immunological and global gene expression to compare the virlence of two newly emerged 2009 H1N1 isolates (A/Mexico/InDRE4487/2009 and A/Mexico/4108/2009) and current seasonal H1N1 influenza strain (A/Kawasaki/UTK-4/2009) in experimentally infected cynomolgus macaques. We showed that infection of macaques with two genetically similar but clinically distinct SOIV isolates from the early stage of the pandemic (A/Mexico/4108/2009 and A/Mexico/InDRE4487/2009) resulted in upper and lower respiratory tract infections and clinical disease ranging from mild to severe pneumonia. Disease associated with these SOIV isolates was clearly advanced over the mild infection caused by A/Kawasaki/UTK-4/2009, a current seasonal strain. Total dose of 7 x 10^6 pfu of influenza virus by a combination of different routes: intratracheal (4 ml), intranasal (0.5 ml each nostril), intraocular (0.5 ml each eye), and oral (1 ml).
Project description:HCC827 cells were barcoded using the ClonTracer lentiviral barcode library such that the majority of cells were infected with a single barcode. One million cells were expanded to ~120 million cells and split into 8 HYPERfasks. Two HYPERfasks were grown under DMSO and grown until confluence. In six HYPERfasks cells were grown under a GI90 concentration of one of two different inhibitors, gefitinib and trametinib (3 HYPERfasks each). Cells achieved confluence at 4 and 9 weeks for gefitinib and trametinib respectively. During this time, the medium and inhibitor were replenished weekly and DNA was extracted from the medium to track barcode content from dying cells.
Project description:This SuperSeries is composed of the following subset Series: GSE36461: MiRNA profiling during infection with H1N1 influenza A virus (A/Mexico/InDRE4487/H1N1/2009) GSE36462: MiRNA profiling during infection with H7N7 influenza A virus (A/Ck/Germany/R28/H7N7/2003) GSE36553: mRNA profiling during infection with H1N1 influenza A virus (A/Mexico/InDRE4487/H1N1/2009) Refer to individual Series
Project description:As humans alter the landscape, wildlife have become increasingly dependent on anthropogenic resources, altering interactions between individuals and subsequently disease transmission dynamics. Further, nutritional quantity and quality greatly impact an individual host’s immune capacity and ability to mitigate damage caused by infectious disease. Thus, understanding the impact of dietary nutrition on immune function is critical for predicting disease severity and transmission as human activity both facilitates the dispersal of pathogens and alters dietary options for wildlife. Here, we use transcriptomics to explore the previously unstudied molecular mechanisms underpinning diet-driven differences in pathogen tolerance using a widespread avian bacterial pathogen, Mycoplasma gallisepticum (MG). MG is an ideal model for understanding the dietary drivers of disease as the human supplementation that wild birds commonly rely on, bird feeders, are also an important source for MG transmission. Significant diet-driven differences in the expression of many genes encoding immune response and translational machinery proteins are seen both in the absence of MG and during the recovery period. Prior to infection, protein-fed birds are more transcriptionally primed for infection than lipid-fed birds which translates to greater tolerance in protein-fed birds during the recovery period. Given the significant importance of human supplemented food in wildlife disease systems, the molecular mechanisms by which interactions between diet and infection emerge provide insight into the ecological and immunological consequences of human behavior and wildlife disease.