Project description:Transcriptome analysis of Arabidopsis colonized by a plant-growth promoting rhizobacterium reveals a general effect on disease resistance RNA transcript levels of Arabidopsis plants, infected by the rhizobacterium Pseudomonas thivervalensis (strain MLG45), and axenic control plants were compared using cDNA microarrays representing approximately 14 300 genes. The analysis revealed an increase of defence-related transcripts in the shoots of bacterized plants relative to control (axenic) plants. These modifications of transcript levels were confirmed by physiological experiments. Plants infected with P. thivervalensis were more resistant to subsequent infections by the virulent pathogen P. syringae pv. tomato (strain DC3000) than control plants. In addition, photosynthesis rates were repressed consistently with the reduced growth of plants colonized by P. thivervalensis. These results highlight the value of molecular phenotyping to predict physiological changes. Set of arrays that are part of repeated experiments Keywords: Biological Replicate
Project description:Transcriptome analysis of Arabidopsis colonized by a plant-growth promoting rhizobacterium reveals a general effect on disease resistance RNA transcript levels of Arabidopsis plants, infected by the rhizobacterium Pseudomonas thivervalensis (strain MLG45), and axenic control plants were compared using cDNA microarrays representing approximately 14 300 genes. The analysis revealed an increase of defence-related transcripts in the shoots of bacterized plants relative to control (axenic) plants. These modifications of transcript levels were confirmed by physiological experiments. Plants infected with P. thivervalensis were more resistant to subsequent infections by the virulent pathogen P. syringae pv. tomato (strain DC3000) than control plants. In addition, photosynthesis rates were repressed consistently with the reduced growth of plants colonized by P. thivervalensis. These results highlight the value of molecular phenotyping to predict physiological changes.
Project description:Pseudomonas aeruginosa is an opportunistic pathogen which causes acute and chronic infections that are difficult to treat. Comparative genomic analysis has showed a great genome diversity among P. aeruginosa clinical strains and revealed important regulatory traits during chronic adaptation. While current investigation of epigenetics of P. aeruginosa is still lacking, understanding the epigenetic regulation may provide biomarkers for diagnosis and reveal important regulatory mechanisms. The present study focused on characterization of DNA methyltransferases (MTases) in a chronically adapted P. aeruginosa clinical strain TBCF10839. Single-molecule real-time sequencing (SMRT-seq) was used to characterize the methylome of TBCF. RCCANNNNNNNTGAR and TRGANNNNNNTGC were identified as target motifs of DNA MTases, M.PaeTBCFI and M.PaeTBCFII, respectively.
Project description:ErfA is a transcription factor of Pseudomonas aeruginosa. We here define the genome-wide binding sites of ErfA by DAP-seq in Pseudomonas aeruginosa PAO1 and IHMA87, Pseudomonas chlororaphis PA23, Pseudomonas protegens CHA0 and Pseudomonas putida KT2440.