Project description:Microarray gene expression profiling to identify differentially regulated genes in Musculus longissimus dorsi (MLD) of Japanese Black (JB) steers compared to Holstein steers (HS)
Project description:Three Japanese Black (JB) and 3 Holstein (HS) steers were fed a high energy diet and were slaughtered with 26 months of age. Intramuscular (IMF) and subcutaneous fat (SCF) was sampled to reveal differences in the expression profiles between the breeds and adipose depots.
Project description:Three Japanese Black (JB) and 3 Holstein (HS) steers were fed a high energy diet and were slaughtered with 26 months of age. Intramuscular (IMF) and subcutaneous fat (SCF) was sampled to reveal differences in the expression profiles between the breeds and adipose depots. Pair wise comparison of JB and HS within IMF and SCF; pairwise comparision of IMF and SCF over both breeds.
Project description:Vitamin A (VA) restriction for beef cattle improves meat marbling. However, its molecular mechanisms are not completely elucidated. We performed microarray analysis to clarify effect of VA restriction on longissimus thoracis muscle gene expressions in Japanese Black steers.
Project description:The liver of dairy cows naturally displays a series of metabolic adaptation during the periparturient period in response to the increasing nutrient requirement of lactation. The hepatic adaptation is partly regulated by insulin resistance and it is affected by the prepartal energy intake level of cows. We aimed to investigate the metabolic changes in the liver of dairy cows during the periparturient at gene expression level and to study the effect of prepartal energy level on the metabolic adaptation at gene expression level.B13:N13
Project description:The objective of this study was to examine changes in muscle gene expression of growing steers during a period of dietary energy restriction followed by a period of realimentation. Crossbred Aberdeen Angus x Holstein Friesian (n = 24) steers were assigned to one of two feeding treatments. Over a 99 d period, 1 group (n=12) was offered a high energy control diet consisting of concentrates ad libitum and 7 kg of grass silage per head daily. The second group (n=12) was offered an energy restricted diet consisting of grass silage ad libitum plus 0.5 kg of concentrate per head per day. From the end of the differential feeding period (99 d), both groups of animals were offered a total mixed ration (grass silage:concentrate ratio of 80:20). This period, which lasted 200 d, was known as the realimentation period. All animals were slaughtered on d 299 of the study. Muscle biopsies were collected at 2 time points (end of the differential feeding period (d 99) and during the realimentation period (d131). RNA was extracted and muscle gene expression was examined using RNA-seq technology and bioinformatic analysis. During the differential feeding period, 17 over-represented pathways were identified, including the peroxisome proliferator activated receptor signalling, glycolysis/ gluconeogenesis and metabolic pathways controlling the metabolism of lipids and lipoproteins which indicate reduced energy intake and fat tissue accumulation occurring in muscle tissue during the restriction phase. During the realimentation period, 164 differentially expressed genes were annotated to 9 over-represented pathways including starch and sucrose metabolism, carbohydrate digestion and absorption and TGF-β signalling pathway. It is hypothesised that the signalling effects of the TGF-β pathway were reduced thereby promoting accelerated cell growth and proliferation in muscle tissue of animals experiencing compensatory growth. This information can be exploited in genomic breeding programmes to assist selection of cattle with a greater ability to compensate following a period dietary restriction. 24 muscle RNA samples were analysed in total. 6 samples were from muscle biopsies collected at the end of a period of dietary restriction (d99) and 6 samples were from muscle biopsies collected at the peak of compensatory growth (d131). In addition, RNA was also analysed from 6 samples collected from animals fed ad libitum at each of these two timepoints.
Project description:The objective of this study was to examine changes in muscle gene expression of growing steers during a period of dietary energy restriction followed by a period of realimentation. Crossbred Aberdeen Angus x Holstein Friesian (n = 24) steers were assigned to one of two feeding treatments. Over a 99 d period, 1 group (n=12) was offered a high energy control diet consisting of concentrates ad libitum and 7 kg of grass silage per head daily. The second group (n=12) was offered an energy restricted diet consisting of grass silage ad libitum plus 0.5 kg of concentrate per head per day. From the end of the differential feeding period (99 d), both groups of animals were offered a total mixed ration (grass silage:concentrate ratio of 80:20). This period, which lasted 200 d, was known as the realimentation period. All animals were slaughtered on d 299 of the study. Muscle biopsies were collected at 2 time points (end of the differential feeding period (d 99) and during the realimentation period (d131). RNA was extracted and muscle gene expression was examined using RNA-seq technology and bioinformatic analysis. During the differential feeding period, 17 over-represented pathways were identified, including the peroxisome proliferator activated receptor signalling, glycolysis/ gluconeogenesis and metabolic pathways controlling the metabolism of lipids and lipoproteins which indicate reduced energy intake and fat tissue accumulation occurring in muscle tissue during the restriction phase. During the realimentation period, 164 differentially expressed genes were annotated to 9 over-represented pathways including starch and sucrose metabolism, carbohydrate digestion and absorption and TGF-β signalling pathway. It is hypothesised that the signalling effects of the TGF-β pathway were reduced thereby promoting accelerated cell growth and proliferation in muscle tissue of animals experiencing compensatory growth. This information can be exploited in genomic breeding programmes to assist selection of cattle with a greater ability to compensate following a period dietary restriction.