Project description:The effect of a short-term calorie restricted diet was evaluated in epididymal white adipose tissue (WAT) in seven strains of mice The dietary intervention was initiated at 8 weeks of age and continued until 22 weeks of age
Project description:Leanness is associated with increased lifespan and is linked to favorable metabolic conditions promoting life extension. We show here that deficiency of the lipid synthesis enzyme acyl CoA:diacylglycerol acyltransferase 1 (DGAT1), which reduces body fat in mice, promotes longevity. Female DGAT1-deficient mice were protected from age-related increases in body fat, non-adipose tissue triglycerides, and markers of inflammation in white adipose tissue. These metabolic changes were accompanied by an increased mean and maximal lifespan of ~25% and ~10%, respectively. The gene expression profile of DGAT1-deficient mice was not highly correlated with calorie restriction of sex and age matched wild-type littermates. Our findings indicate that loss of DGAT1-mediated lipid synthesis results in leanness, protects against age-related metabolic consequences, and thus extends longevity. Liver gene expression profiles between short-term calorie restricted wild-type (WTCR) and Dgat1 deficient (KO) middle-aged (15-16 mo) female mice were compared to determine if calorie restriction and Dgat1 deficiency rely on common regulatory pathways for the promotion of longevity. Both CR and KO were compared to middle-aged wild-type female littermates fed a standard chow diet ad libitum (WTAL).
Project description:Transcription profiling of adipose tissue and skeletal muscle from non-obese women before and after calorie restriction, resveratrol or placebo treatment
Project description:The transcriptomic expression in adipose tissues of Adipo-SIRT1 and Adipo-H363Y are compared and related to those of the wild type (WT) controls. Total RNA was extracted from epididymal adipose tissues of mice aged eight- or 40-weeks, either fed ad libitum or subjected to calorie restriction. Affymetrix Mouse Genome 430 2.0 expression arrays were used.
Project description:In mammals, white adipose tissues are largely divided into visceral epididymal adipose tissue (EAT) and subcutaneous inguinal adipose tissue (IAT) with distinct metabolic properties. To investigate molecular mechanisms underlying depot-specific metabolic roles, we report the transcriptomes of adipocytes and SVCs derived from NCD-fed mouse epididymal adipose tissue (EAT) or inguinal adipose tissues (IAT).