Project description:We analyzed the changes in the brain tissue of Apis mellifera ligustica at the molecular level by sequencing after using fluvalinate. We found that the differentially expressed miRNAs (DEM) may be involved in hippocampal cell apoptosis and damage to memory functions. This result may be related to behaviors observed after the administration of this medication, such as a lack of homing at night and behavioral disturbances. Overall, our results provide new information about the molecular mechanisms and pathways of fluvalinate action in the brain tissue of Apis mellifera ligustica.
Project description:To explore brain neuropeptidic functions in behavioral regulation, a label-free quantitative strategy was employed to compare neuropeptidomic variations between behavioral phenotypes (nurse bees, nectar foragers, and pollen foragers) and the two honeybee species (Apis mellifera ligustica and Apis cerana cerana).
Project description:The microsporidia Nosema ceranae are intracellular parasites that proliferate in the midgut epithelial cells of honey bees (Apis mellifera). To analyze the pathological effects of those microsporidia, we orally infected honey bee workers 7 days after their emergence. Bees were flash frozen 15 days after the infection. Then, the effects on the gut ventriculi were analyzed and compared to non-infected (control) bees.
Project description:Explorative description of the gut microbiota of Apis mellifera ligustica. the study aims at describing the diverse fractions of the microbial community including bacteria, fungi, unicellular parasites
Project description:The microsporidia Nosema ceranae are intracellular parasites that proliferate in the midgut epithelial cells of honey bees (Apis mellifera). To analyze the pathological effects of those microsporidia, we orally infected honey bee workers 7 days after their emergence. Bees were flash frozen 15 days after the infection. Then, the effects on the gut ventriculi were analyzed and compared to non-infected (control) bees. Comparisons of control vs Nosema ceranae bees
Project description:We aim to evaluate the effects of four Nosema spores’ isolates, (i) and (ii) N. ceranae isolated from A. mellifera hosts from two different geographical origins, (iii) N. ceranae from A. cerana host and (iv) N. apis from A. mellifera, on the A. mellifera on gut proteomics at the early stage of infection. To dissect the molecular mechanism responsible of the susceptibility of A. mellifera to Nosema, we investigated by high-resolution proteomics (LC-ESI-MS/MS) and differential label-free quantification of proteins (LFQ) the molecular cross-talk existing between different species and isolates of N. apis and N. ceranae, and the targetted gut tissue of A. mellifera. To reach the objectives of this study, we performed a bottom-up proteomic analysis on the different anatomical sections of the gut tissue (esophagus, crop, midgut, ileum and rectum) at an early stage of the exposition to Nosema spores (4 days). Then, we focused on the midgut, the region targeted by Nosema sposres for germination and, as we found out, the second region with the highest load of Nosema proteins, after the rectum, to perform differential quantitative proteomic analyses and acquire series of up- and down-regulated proteins. We discussed the different pathways observed to be impacted by different Nosema species and isolates with a main focus on the deregulated metabolic and response to stimuli processes.