Project description:Background: Methanol is present in most ecosystems and may also occur in industrial applications, e.g. as an impurity of carbon sources such as technical glycerol. Methanol often inhibits growth of bacteria, thus, methanol tolerance may limit fermentative production processes. Results: The methanol tolerance of the amino acid producing soil bacterium Corynebacterium glutamicum was improved by genetic adaption in the presence of methanol. The resulting strain Tol1 exhibited significantly increased growth rates in the presence of up to 1 M methanol. However, neither transcriptional changes nor increased enzyme activities of the linear methanol oxidation pathway were observed, which was in accordance with the finding that tolerance to the downstream metabolites formaldehyde and formate was not improved. Genome sequence analysis of strain Tol1 revealed two point mutations potentially relevant to enhanced methanol tolerance: one leading to the amino acid exchange A165T of O-acetylhomoserine sulfhydrolase MetY and the other leading to shortened CoA transferase Cat (Q342*). Introduction of either mutation into the genome of C. glutamicum wild type increased methanol tolerance and introduction of both mutations into C. glutamicum was sufficient to achieve methanol tolerance almost indistinguishable from that of strain Tol1. Conclusion: The methanol tolerance of C. glutamicum can be increased by two point mutations leading to amino acid exchange of O-acetylhomoserine sulfhydrolase MetY and shortened CoA transferase Cat. Introduction of these mutations into producer strains may be helpful when using carbon sources containing methanol as component or impurity. The gene expression was analyzed in the methanol tolerant strain Tol1 in comparison to the C. glutamicumWT. Direct comparison in LB complex medium and analysis of expression response to methanol addition in mCGXII minimal medium with 100 mM glucose.
Project description:Background: Methanol is present in most ecosystems and may also occur in industrial applications, e.g. as an impurity of carbon sources such as technical glycerol. Methanol often inhibits growth of bacteria, thus, methanol tolerance may limit fermentative production processes. Results: The methanol tolerance of the amino acid producing soil bacterium Corynebacterium glutamicum was improved by genetic adaption in the presence of methanol. The resulting strain Tol1 exhibited significantly increased growth rates in the presence of up to 1 M methanol. However, neither transcriptional changes nor increased enzyme activities of the linear methanol oxidation pathway were observed, which was in accordance with the finding that tolerance to the downstream metabolites formaldehyde and formate was not improved. Genome sequence analysis of strain Tol1 revealed two point mutations potentially relevant to enhanced methanol tolerance: one leading to the amino acid exchange A165T of O-acetylhomoserine sulfhydrolase MetY and the other leading to shortened CoA transferase Cat (Q342*). Introduction of either mutation into the genome of C. glutamicum wild type increased methanol tolerance and introduction of both mutations into C. glutamicum was sufficient to achieve methanol tolerance almost indistinguishable from that of strain Tol1. Conclusion: The methanol tolerance of C. glutamicum can be increased by two point mutations leading to amino acid exchange of O-acetylhomoserine sulfhydrolase MetY and shortened CoA transferase Cat. Introduction of these mutations into producer strains may be helpful when using carbon sources containing methanol as component or impurity.
Project description:Corynebacterium glutamicum is a bacterium widely employed in the industrial production of amino acids as well as a broad range of other biotechnological products. The present study describes the characterization of C. glutamicum proteoforms, and their post-translational modifications (PTMs) employing top-down proteomics. Despite previous evidence of PTMs having roles in the regulation of C. glutamicum metabolism, this is the first top-down proteome analysis of this organism. We identified 1125 proteoforms from 273 proteins, with 60 % of proteins presenting at least one mass shift, suggesting the presence of PTMs, including several acetylated, oxidized and formylated proteoforms. Furthermore, proteins relevant to amino acid production, protein secretion, and oxidative stress were identified with mass shifts suggesting the presence of uncharacterized PTMs and proteoforms that may affect biotechnologically relevant processes in this industrial workhorse. For instance, the membrane proteins mepB and SecG were identified as a cleaved and a formylated proteoform, respectively. While in the central metabolism, OdhI was identified as two proteoforms with potential biological relevance: a cleaved proteoform and a proteoform with PTMs corresponding to a 70 Da mass shift.
Project description:The dicarboxylic acid glutarate is gaining attention in the chemical and pharmaceutical industry as promising building-block. Synthesis of glutarate via microbial fermentation is a desirable aim which will allow the production of biopolymers avoiding fossil raw materials. Here, by rational metabolic engineering of the biofactory microorganism Corynebacterium glutamicum the fermentative production of glutarate from glucose was established. Modifications focused on increase glucose consumption and reduce by-products formation together with the heterologous overexpression of the L-lysine decarboxylase, putrescine transaminase and putrescine dehydrogenase genes from E. coli in the L-lysine producer GRLys1 allowed production the glutarate precursor 5-aminovalerate. Additional heterologous overexpression of 5-aminovalerate amino transferase and glutarate-semialdehyde dehydrogenase genes from C. glutamicum and three Pseudomonas species enabled glutarate synthesis from glucose. By coupling glutarate production with the glutamate synthesis of C. glutamicum glutarate titer improved 10%. The final strain was tested in a glucose-based fed-batch fermentation
Project description:Corynebacterium glutamicum can survive by using ferulic acid as the sole carbon source. In this study, we assessed the response of C.glutamicum to ferulic acid stress by means of a global transcriptional response analysis. The transcriptional data showed that several genes involved in degradation of ferulic acid were affected. Moreover, several genes related to the stress response; protein protection or degradation and DNA repair; replication, transcription and translation; and the cell envelope were differentially expressed. Deletion of the katA or sigE gene in C. glutamicum resulted in a decrease in cell viability under ferulic acid stress. These insights will facilitate further engineering of model industrial strains, with enhanced tolerance to ferulic acid to enable easy production of biofuels from lignocellulose.
Project description:The Gram-positive soil bacterium Corynebacterium glutamicum is widely used in industrial fermentative processes for the production of amino acids. The world production of L-lysine has surpassed 2 million tons per year. Glucose is taken up into the C. glutamicum cell by the phosphotransferase system PTS which can be replaced and/or enhanced by a permease and a glucokinase. Heterologous expression of the gene for the high-affinity glucose permease from Streptomyces coelicolor and of the Bacillus subitilis glucokinase gene fully compensated for the absence of the PTS in ï??hpr strains and strains grew as fast with glucose as C. glutamicum wild type. Growth of PTS-positive strains with glucose was accelerated when the endogenous inositol permease IolT2 and the glucokinase from Bacillus subtilis were overproduced using plasmid pEKEx3-IolTBest. When the genome-reduced C. glutamicum strain GRLys1 carrying additional in-frame deletions of sugR and ldhA to derepress glycolytic and PTS genes and to circumvent formation of L-lactate as by-product was transformed with this plasmid, a 40% higher L-lysine titer and a 30% higher volumetric productivity as compared to GRLys1(pEKEx3) resulted. The non-proteinogenic amino acid pipecolic acid (L-PA), a precursor of immunosuppressants, peptide antibiotics or piperidine alkaloids, can be derived from L-lysine. To enable production of L-PA by the L-lysine producing strain, the L-Lysine dehydrogenase gene lysDH from Silicibacter pomeroyi and the endogenous pyrroline 5-carboxylate reductase gene proC were expressed as synthetic operon. This enabled C. glutamicum to L-PA with a yield of 0.49 ± 0.03 gg-1 and a volumetric productivity of 0.04 ± 0.00 gL-1h-1.To the best of our knowledge, this is the first fermentative process for the production of L-PA. Two conditions tested, 200 mM NaCl Vs 200 mM pipecolic supplemented in the culture medium, control experiments done with the addition of 200mM of NaCl. Four technical replicates.