Project description:<p>Deep-sea hydrothermal vents are unique ecosystems that may release chemically distinct dissolved organic matter to the deep ocean. Here, we describe the composition and concentrations of polar dissolved organic compounds observed in low and high temperature hydrothermal vent fluids at 9°50′N on the East Pacific Rise. The concentration of dissolved organic carbon was 46 µM in the low temperature hydrothermal fluids and 14 µM in the high temperature hydrothermal fluids. In the low temperature vent fluids, quantifiable dissolved organic compounds were dominated by water-soluble vitamins and amino acids. Derivatives of benzoic acid and the organic sulfur compound 2,3-dihydroxypropane-1-sulfonate (DHPS) were also present in low and high temperature hydrothermal fluids. The low temperature vent fluids contain organic compounds that are central to biological processes, suggesting that they are a by-product of biological activity in the subseafloor. These compounds may fuel heterotrophic and other metabolic processes at deep-sea hydrothermal vents and beyond.</p>
Project description:This data set was downloaded from MetaboLights (http://www.ebi.ac.uk/metabolights/) accession number MTBLS428 Abstract:"Deep-sea hydrothermal vents are unique ecosystems that may provide chemically distinct dissolved organic matter to the deep ocean. Here, we describe the types and concentrations of polar dissolved organic compounds observed at low and high temperature hydrothermal vents at 9°50’N, the East Pacific Rise. The concentration of dissolved organic carbon was 46 µM in the low temperature hydrothermal fluids and 14 µM in the high temperature hydrothermal fluids. In the low temperature vent fluids, identifiable dissolved organic compounds were dominated by water-soluble vitamins and amino acids. Derivatives of benzoic acid and the organic sulfur compound 2,3-dihydroxypropane-1-sulfonate (DHPS) were also present in low and high temperature hydrothermal fluids. Thus, low temperature vent fluids contain organic compounds that are central to biological processes, suggesting that they are a by-product of subseafloor biological activity. These compounds may fuel heterotrophic, metabolic processes at deep-sea hydrothermal vents and beyond."
Project description:Colonization of deep-sea hydrothermal vents by invertebrates was made efficient through their adaptation to a symbiotic lifestyle with chemosynthetic bacteria, the primary producers of these ecosystems. Anatomical adaptations such as the establishment of specialized cells or organs have been evidenced in numerous deep-sea invertebrates. However, very few studies detailed global inter-dependencies between host and symbionts in these ecosystems. In this study, we proposed to describe, using a proteo-transcriptomic approach, the effects of symbionts on the deep-sea mussel Bathymodiolus azoricus’ molecular biology. We induced an in situ depletion of symbionts and compared the proteo-transcriptome of the gills of mussels in three conditions: symbiotic mussels (natural population), symbiont-depleted mussels and aposymbiotic mussels