Project description:Differentiated macrophages can self-renew in tissues and expand long-term in culture, but the gene regulatory mechanisms that accomplish self-renewal in the differentiated state have remained unknown. Here we show that in mice, the transcription factors MafB and c-Maf repress a macrophage-specific enhancer repertoire associated with a gene network controlling self-renewal. Single cell analysis revealed that, in vivo, proliferating resident macrophages can access this network by transient down-regulation of Maf transcription factors. The network also controls embryonic stem cell self-renewal but is associated with distinct embryonic stem cell-specific enhancers. This indicates that distinct lineage-specific enhancer platforms regulate a shared network of genes that control self-renewal potential in both stem and mature cells.
Project description:Chickarmane2008 - Stem cell lineage - NANOG GATA-6 switch
In this work, a dynamical model of lineage
determination based upon a minimal circuit, as discussed in PMID: 17215298
, which contains the Oct4/Sox2/Nanog core as well its interaction
with a few other key genes is discussed.
This model is described in the article:
A computational model for understanding stem cell, trophectoderm and endoderm lineage determination.
Chickarmane V, Peterson C
PloS one. 2008, 3(10):e3478
Abstract:
BACKGROUND: Recent studies have associated the transcription factors, Oct4, Sox2 and Nanog as parts of a self-regulating network which is responsible for maintaining embryonic stem cell properties: self renewal and pluripotency. In addition, mutual antagonism between two of these and other master regulators have been shown to regulate lineage determination. In particular, an excess of Cdx2 over Oct4 determines the trophectoderm lineage whereas an excess of Gata-6 over Nanog determines differentiation into the endoderm lineage. Also, under/over-expression studies of the master regulator Oct4 have revealed that some self-renewal/pluripotency as well as differentiation genes are expressed in a biphasic manner with respect to the concentration of Oct4. METHODOLOGY/
PRINCIPAL FINDINGS: We construct a dynamical model of a minimalistic network, extracted from ChIP-on-chip and microarray data as well as literature studies. The model is based upon differential equations and makes two plausible assumptions; activation of Gata-6 by Oct4 and repression of Nanog by an Oct4-Gata-6 heterodimer. With these assumptions, the results of simulations successfully describe the biphasic behavior as well as lineage commitment. The model also predicts that reprogramming the network from a differentiated state, in particular the endoderm state, into a stem cell state, is best achieved by over-expressing Nanog, rather than by suppression of differentiation genes such as Gata-6.
CONCLUSIONS: The computational model provides a mechanistic understanding of how different lineages arise from the dynamics of the underlying regulatory network. It provides a framework to explore strategies of reprogramming a cell from a differentiated state to a stem cell state through directed perturbations. Such an approach is highly relevant to regenerative medicine since it allows for a rapid search over the host of possibilities for reprogramming to a stem cell state.
This model is hosted on BioModels Database
and identified
by: MODEL8389825246
.
To cite BioModels Database, please use: BioModels Database: An enhanced, curated and annotated resource
for published quantitative kinetic models
.
To the extent possible under law, all copyright and related or
neighbouring rights to this encoded model have been dedicated to the public
domain worldwide. Please refer to CC0 Public Domain
Dedication
for more information.
Project description:Chickarmane2008 - Stem cell lineage determination
In this work, a dynamical model of lineage
determination based upon a minimal circuit, as discussed in PMID: 17215298
, which contains the Oct4/Sox2/Nanog core as well its interaction
with a few other key genes is discussed.
This model is described in the article:
A computational model for understanding stem cell, trophectoderm and endoderm lineage determination.
Chickarmane V, Peterson C
PloS one. 2008, 3(10):e3478
Abstract:
BACKGROUND: Recent studies have associated the transcription factors, Oct4, Sox2 and Nanog as parts of a self-regulating network which is responsible for maintaining embryonic stem cell properties: self renewal and pluripotency. In addition, mutual antagonism between two of these and other master regulators have been shown to regulate lineage determination. In particular, an excess of Cdx2 over Oct4 determines the trophectoderm lineage whereas an excess of Gata-6 over Nanog determines differentiation into the endoderm lineage. Also, under/over-expression studies of the master regulator Oct4 have revealed that some self-renewal/pluripotency as well as differentiation genes are expressed in a biphasic manner with respect to the concentration of Oct4. METHODOLOGY/
PRINCIPAL FINDINGS: We construct a dynamical model of a minimalistic network, extracted from ChIP-on-chip and microarray data as well as literature studies. The model is based upon differential equations and makes two plausible assumptions; activation of Gata-6 by Oct4 and repression of Nanog by an Oct4-Gata-6 heterodimer. With these assumptions, the results of simulations successfully describe the biphasic behavior as well as lineage commitment. The model also predicts that reprogramming the network from a differentiated state, in particular the endoderm state, into a stem cell state, is best achieved by over-expressing Nanog, rather than by suppression of differentiation genes such as Gata-6.
CONCLUSIONS: The computational model provides a mechanistic understanding of how different lineages arise from the dynamics of the underlying regulatory network. It provides a framework to explore strategies of reprogramming a cell from a differentiated state to a stem cell state through directed perturbations. Such an approach is highly relevant to regenerative medicine since it allows for a rapid search over the host of possibilities for reprogramming to a stem cell state.
This model is hosted on BioModels Database
and identified
by: MODEL8390025091
.
To cite BioModels Database, please use: BioModels Database: An enhanced, curated and annotated resource
for published quantitative kinetic models
.
To the extent possible under law, all copyright and related or
neighbouring rights to this encoded model have been dedicated to the public
domain worldwide. Please refer to CC0 Public Domain
Dedication
for more information.
Project description:The Nucleosome Remodeling and Deacetylase (NuRD) complex plays an important role in gene expression regulation, stem cell self-renewal, and lineage commitment. Yet little is known about the dynamics of NuRD during cellular differentiation. Here, we study these dynamics using genome-wide profiling and quantitative interaction proteomics in mouse embryonic stem cells (ESCs) and neural progenitor cells (NPCs). The genomic targets of NuRD are highly dynamic during differentiation, with most binding occurring at cell-type specific promoters and enhancers. We identify ZFP296 as a novel, ESC-specific NuRD interactor that also interacts with the SIN3A complex. ChIP-sequencing in Zfp296 knockout (KO) ESCs reveals decreased NuRD binding both genome-wide and at ZFP296 binding sites, although this has little effect on the transcriptome. Nevertheless, Zfp296 KO ESCs exhibit delayed induction of lineage-specific markers upon differentiation to embryoid bodies. In summary, we identify an ESC-specific NuRD interacting protein which regulates genome-wide NuRD binding and cellular differentiation.
Project description:ZNF462 haploinsufficiency is linked to Weiss-Kruszka Syndrome, a genetic disorder characterized by neurodevelopmental defects including Autism. Though conserved in vertebrates and essential for embryonic development the molecular functions of ZNF462 remain unclear. We identified its murine homolog ZFP462 in a screen for mediators of epigenetic gene silencing. Here, we show that ZFP462 safeguards neural lineage specification of mouse embryonic stem cells (ESCs) by targeting the H3K9-specific histone methyltransferase complex G9A/GLP to silence mesoendodermal genes. ZFP462 binds to transposable elements (TEs) that are potential enhancers harboring ESC-specific transcription factor (TF) binding sites. Recruiting G9A/GLP, ZFP462 seeds heterochromatin, restricting TF binding. Loss of ZFP462 in ESCs results in increased chromatin accessibility at target sites and ectopic expression of mesoendodermal genes. Taken together, ZFP462 confers lineage- and locus-specificity to the broadly expressed epigenetic regulator G9A/GLP. Our results suggest that aberrant activation of lineage non-specific genes in the neuronal lineage underlies ZNF462-associated neurodevelopmental pathology.
Project description:Chickarmane2006 - Stem cell switch reversible
Kinetic modeling approach of the transcriptional dynamics of the embryonic stem cell switch.
This model is described in the article:
Transcriptional dynamics of the embryonic stem cell switch.
Chickarmane V, Troein C, Nuber UA, Sauro HM, Peterson C
PLoS Computational Biology. 2006; 2(9):e123
Abstract:
Recent ChIP experiments of human and mouse embryonic stem cells have elucidated the architecture of the transcriptional regulatory circuitry responsible for cell determination, which involves the transcription factors OCT4, SOX2, and NANOG. In addition to regulating each other through feedback loops, these genes also regulate downstream target genes involved in the maintenance and differentiation of embryonic stem cells. A search for the OCT4-SOX2-NANOG network motif in other species reveals that it is unique to mammals. With a kinetic modeling approach, we ascribe function to the observed OCT4-SOX2-NANOG network by making plausible assumptions about the interactions between the transcription factors at the gene promoter binding sites and RNA polymerase (RNAP), at each of the three genes as well as at the target genes. We identify a bistable switch in the network, which arises due to several positive feedback loops, and is switched on/off by input environmental signals. The switch stabilizes the expression levels of the three genes, and through their regulatory roles on the downstream target genes, leads to a binary decision: when OCT4, SOX2, and NANOG are expressed and the switch is on, the self-renewal genes are on and the differentiation genes are off. The opposite holds when the switch is off. The model is extremely robust to parameter changes. In addition to providing a self-consistent picture of the transcriptional circuit, the model generates several predictions. Increasing the binding strength of NANOG to OCT4 and SOX2, or increasing its basal transcriptional rate, leads to an irreversible bistable switch: the switch remains on even when the activating signal is removed. Hence, the stem cell can be manipulated to be self-renewing without the requirement of input signals. We also suggest tests that could discriminate between a variety of feedforward regulation architectures of the target genes by OCT4, SOX2, and NANOG.
This model is hosted on BioModels Database
and identified by: MODEL7957907314
.
To cite BioModels Database, please use: BioModels Database: An enhanced, curated and annotated resource for published quantitative kinetic models
.
To the extent possible under law, all copyright and related or neighbouring rights to this encoded model have been dedicated to the public domain worldwide. Please refer to CC0 Public Domain Dedication
for more information.
Project description:Chickarmane2006 - Stem cell switch irreversible
Kinetic modeling approach of the transcriptional dynamics of the embryonic stem cell switch.
This model is described in the article:
Transcriptional dynamics of the embryonic stem cell switch.
Chickarmane V, Troein C, Nuber UA, Sauro HM, Peterson C
PLoS Computational Biology. 2006; 2(9):e123
Abstract:
Recent ChIP experiments of human and mouse embryonic stem cells have elucidated the architecture of the transcriptional regulatory circuitry responsible for cell determination, which involves the transcription factors OCT4, SOX2, and NANOG. In addition to regulating each other through feedback loops, these genes also regulate downstream target genes involved in the maintenance and differentiation of embryonic stem cells. A search for the OCT4-SOX2-NANOG network motif in other species reveals that it is unique to mammals. With a kinetic modeling approach, we ascribe function to the observed OCT4-SOX2-NANOG network by making plausible assumptions about the interactions between the transcription factors at the gene promoter binding sites and RNA polymerase (RNAP), at each of the three genes as well as at the target genes. We identify a bistable switch in the network, which arises due to several positive feedback loops, and is switched on/off by input environmental signals. The switch stabilizes the expression levels of the three genes, and through their regulatory roles on the downstream target genes, leads to a binary decision: when OCT4, SOX2, and NANOG are expressed and the switch is on, the self-renewal genes are on and the differentiation genes are off. The opposite holds when the switch is off. The model is extremely robust to parameter changes. In addition to providing a self-consistent picture of the transcriptional circuit, the model generates several predictions. Increasing the binding strength of NANOG to OCT4 and SOX2, or increasing its basal transcriptional rate, leads to an irreversible bistable switch: the switch remains on even when the activating signal is removed. Hence, the stem cell can be manipulated to be self-renewing without the requirement of input signals. We also suggest tests that could discriminate between a variety of feedforward regulation architectures of the target genes by OCT4, SOX2, and NANOG.
This model is hosted on BioModels Database
and identified by: MODEL7957942740
.
To cite BioModels Database, please use: BioModels Database: An enhanced, curated and annotated resource for published quantitative kinetic models
.
To the extent possible under law, all copyright and related or neighbouring rights to this encoded model have been dedicated to the public domain worldwide. Please refer to CC0 Public Domain Dedication
for more information.
Project description:Super-enhancers (SEs) are large clusters of transcriptional enhancers that are co-occupied by multiple lineage specific transcription factors driving expression of genes that define cell identity. In embryonic stem cells (ESCs), SEs are highly enriched for Oct4, Sox2, and Nanog in the enhanceosome assembly and express enhancer RNAs (eRNAs). We sought to dissect the molecular control mechanism of SE activity and eRNA transcription for pluripotency and reprogramming. Starting from a protein interaction network surrounding Sox2, a key pluripotency and reprogramming factor that guides the ESC-specific enhanceosome assembly and orchestrates the hierarchical transcriptional activation during the final stage of reprogramming, we discovered Tex10 as a novel pluripotency factor that is evolutionally conserved and functionally significant in ESC self-renewal, early embryo development, and reprogramming. Tex10 is enriched at SEs in a Sox2-dependent manner and coordinates histone acetylation and DNA demethylation of SEs. Our study sheds new light on epigenetic control of SE activity for cell fate determination. Genome binding/occupancy profiling of Tex10 was performed in mouse embryonic stem cells by ChIP sequencing.
Project description:Super-enhancers (SEs) are large clusters of transcriptional enhancers that are co-occupied by multiple lineage specific transcription factors driving expression of genes that define cell identity. In embryonic stem cells (ESCs), SEs are highly enriched for Oct4, Sox2, and Nanog in the enhanceosome assembly and express enhancer RNAs (eRNAs). We sought to dissect the molecular control mechanism of SE activity and eRNA transcription for pluripotency and reprogramming. Starting from a protein interaction network surrounding Sox2, a key pluripotency and reprogramming factor that guides the ESC-specific enhanceosome assembly and orchestrates the hierarchical transcriptional activation during the final stage of reprogramming, we discovered Tex10 as a novel pluripotency factor that is evolutionally conserved and functionally significant in ESC self-renewal, early embryo development, and reprogramming. Tex10 is enriched at SEs in a Sox2-dependent manner and coordinates histone acetylation and DNA demethylation of SEs. Our study sheds new light on epigenetic control of SE activity for cell fate determination. RNA sequencing analysis was performed in mouse embryonic stem cells with Luciferase and Tex10 knockdown. RNA-seq Experiments were carry out in two biological replicates.