Project description:After long-term magnesium-deficiency treatment, 2D electrophoresis and mass spectrum were conducted to investigate different proteiomic profile in Citrus sinensis roots and leaves samples.
Project description:In China, magnesium (Mg)-deficiency often occurs in citrus orchards, and is responsible for the loss of yield and poor fruit quality. However, very limited data are available on Mg-deficiency-responsive microRNAs (miRNAs) in higher plants. Using Illumina sequencing, we isolated 93 (91 known and 2 novel) up- and 90 (83 known and 7 novel) down-regulated miRNAs from Mg-deficient Citrus sinensis leaves. In addition to the remarkable metabolic flexibility as indicated by the great alteration of miRNA expression, the adaptive responses of leaf miRNAs to Mg-deficiency might also involve the following aspects: (a) accelerating protein turnover and amino acid biosynthesis by repressing the expression of miR2919, miR7812, miR5904 and miR5742; (b) up-regulating stress-related genes by down-regulating miR2919, miR164 and miR7812; (c) enhancing cell transport due to decreased expression of miR2919, miR3946, miR7533, miR1222, miR779, miR6143 and miR2868 and increased expression of miR395, miR1077, miR1160 and miR8019; (d) activating lipid metabolism-related genes by repressing miR158, miR1222, miR7533 and miR3946; (e) inducing cell wall-related genes by decreasing miR7533, miR779 and miR2868 expression; and (f) maintaing primary meristems by down-regulating miR6135. To conclude, we identified some candidate miRNAs that might contribute to Mg-deficiency tolerance. Our results are usefult not only for increasing our understaning of the molecular mechanisms on plant Mg-deficiency tolerance at post-transcriptional level, but also for obtaining the key miRNAs for plant Mg-deficiency tolerance.
Project description:Background: MicroRNAs play important roles in the adaptive responses of plants to nutrient deficiencies. Here, we sequenced two small RNA libraries from B-deficient and -sufficient (control) Citrus sinensis leaves, respectively, using Illumina sequencing in order to identify the potential miRNAs related to the tolerance of citrus to B-deficiency. Results: Ninety one (83 known and 8 novel) up- and 81 (75 known and 6 novel) downregulated miRNAs were isolated from B-deficient leaves. The great alteration of miRNA expression might contribute to the tolerance of citrus to B-deficiency. The adaptive responses of miRNAs to B-deficiency might related to several aspects: (a) attenuation of plant growth and development by repressing auxin signaling due to decreased TIR1 level and ARF-mediated gene expression by altering the expression of miR393, miR160 and miR3946; (b) maintaining leaf phenotype and enhancing the stress tolerance by up-regulating NACs targeted by miR159, miR782, miR3946 and miR7539; (c) activation of the stress responses and antioxidant system through down-regulating the expression of miR164, miR6260, miR5929, miR6214, miR3946 and miR3446; (d) decreasing the expression of major facilitator superfamily protein genes targeted by miR5037, thus lowering B export from plants. Also, B-deficiency-induced downregulation of miR408 might play a role in plant tolerance to B-deficiency by regulating Cu homeostasis and enhancing superoxide dismutase activity. Conclusions: Our study reveals some novel responses of citrus to B-deficiency, which increase our understanding of the adaptive mechanisms of citrus to B-deficiency at the miRNA (post-transcriptional) level.
Project description:Background: Magnesium (Mg)-deficiency occurs most frequently in strongly acidic, sandy soils. Citrus are grown mainly on acidic and strong acidic soils. Mg-deficiency causes poor fruit quality and low fruit yield in some Citrus orchards. For the first time, we investigated Mg-deficiency-responsive miRNAs in ‘Xuegan’ (Citrus sinensis) roots using Illumina sequencing in order to obtain some miRNAs presumably responsible for Citrus Mg-deficiency tolerance. Results: We obtained 101 (69) miRNAs with increased (decreased) expression from Mg-starved roots. Our results suggested that the adaptation of Citrus roots to Mg-deficiency was related to the several aspects: (a) inhibiting root respiration and related gene expression via inducing miR158 and miR2919; (b) enhancing antioxidant system by down-regulating related miRNAs (miR780, miR6190, miR1044, miR5261 and miR1151) and the adaptation to low-phosphorus (miR6190); (c) activating transport-related genes by altering the expression of miR6190, miR6485, miR1044, miR5029 and miR3437; (d) elevating protein ubiquitination due to decreased expression levels of miR1044, miR5261, miR1151 and miR5029; (e) maintaining root growth by regulating miR5261, miR6485 and miR158 expression; and (f) triggering DNA repair (transcription regulation) by regulating miR5176 and miR6485 (miR6028, miR6190, miR6485, miR5621, miR160 and miR7708) expression. Mg-deficiency-responsive miRNAs involved in root signal transduction also had functions in Citrus Mg-deficiency tolerance. Conclusions: We obtained several novel Mg-deficiency-responsive miRNAs (i.e., miR5261, miR158, miR6190, miR6485, miR1151 and miR1044) possibly contributing to Mg-deficiency tolerance. These results revealed some novel clues on the miRNA-mediated adaptation to nutrient deficiencies in higher plants.
Project description:Small RNAs (21-24 nt) are pivotal regulators of gene expression that guide both transcriptional and post-transcriptional silencing mechanisms in diverse eukaryotes, including most if not all plants. MicroRNAs (miRNAs) and short interfering RNAs (siRNAs) are the two major types, both of which have a demonstrated and important role in plant development, stress responses and pathogen resistance. In this work, we used a deep sequencing approach (Sequencing-By-Synthesis, or SBS) to develop sequence resources of small RNAs from Citrus sinensis tissues (including leaves, flowers and fruit). The high depth of the resulting datasets enabled us to examine in detail critical small RNA features, such as size distribution, tissue-specific regulation and sequence conservation between different organs in this species. We also developed database resources and a dedicated website (http://smallrna.udel.edu/) with computational tools for allowing other users to identify new miRNAs or siRNAs involved in specific regulatory pathways, verify the degree of conservation of these sequences in other plant species and map small RNAs on genes or larger regions of the maize genome under study. Small RNA libraries were derived from leaves, flowers and fruit of Citrus sinensis. Total RNA was isolated using the TriReagent (Molecular Research Center) for leaves and flowers and the Guanidinium-free for fruits, and submitted to Illumina (Hayward, CA, http://www.illumina.com) for small RNA library construction using approaches described in (Lu et al., 2007) with minor modifications. The small RNA libraries were sequenced with the Sequencing-By-Synthesis (SBS) technology by Illumina. PERL scripts were designed to remove the adapter sequences and determine the abundance of each distinct small RNA. We thank Erik Mirkov for providing the plant material, as well as Kan Nobuta and Gayathri Mahalingam for assistance with the computational methods.
Project description:Background: Limited data are available on aluminum (Al)-toxicity-induced alterations of gene profiles in woody plants. Seedlings of Al-tolerant Citrus sinensis and Al-intolerant Citrus grandis were fertigated with nutrient solution containing 0 and 1.0 mM AlCl3•6H2O. Thereafter, we investigated the Al-toxicity-induced alterations of transcriptomics in leaves by RNA-Seq. Results: Using RNA-seq, we isolated 1162 (181) up- and 496 (234) downregulated genes from Al-treated C. grandis (C. sinensis) leaves. Clearly, gene expression was less affected by Al-toxicity in C. sinensis leaves than in C. grandis ones. Several Al-toxicity-responsive genes homologous to known Al-tolerance genes: ALUMINUM SENSITIVE 3 (ALS3), multidrug and toxic compound extrusion (MATE), glutathione S-transferase (GST), L-galactose dehydrogenase(L-GalDH) and lipoxygenase (LOX) were identified in citrus leaves. Genes related to signal transduction, and sulfur transport and metabolism might also play a role in the higher Al-tolerance of C. sinensis. Conclusions: This is the first comparative investigation of transcriptomic responses in Al-treated citrus leaves. There were common and unique mechanisms for citrus Al-tolerance. These results provide a platform for further investigating the roles of genes possibly responsible for citrus Al-tolerance.
Project description:Small RNAs (21-24 nt) are pivotal regulators of gene expression that guide both transcriptional and post-transcriptional silencing mechanisms in diverse eukaryotes, including most if not all plants. MicroRNAs (miRNAs) and short interfering RNAs (siRNAs) are the two major types, both of which have a demonstrated and important role in plant development, stress responses and pathogen resistance. In this work, we used a deep sequencing approach (Sequencing-By-Synthesis, or SBS) to develop sequence resources of small RNAs from Citrus sinensis tissues (including leaves, flowers and fruit). The high depth of the resulting datasets enabled us to examine in detail critical small RNA features, such as size distribution, tissue-specific regulation and sequence conservation between different organs in this species. We also developed database resources and a dedicated website (http://smallrna.udel.edu/) with computational tools for allowing other users to identify new miRNAs or siRNAs involved in specific regulatory pathways, verify the degree of conservation of these sequences in other plant species and map small RNAs on genes or larger regions of the maize genome under study.
Project description:Citrus greening or huanglongbing (HLB) is a devastating disease of citrus. HLB is associated with the phloem-limited fastidious prokaryotic alpha-proteobacterium Candidatus Liberibacter spp. In this report, we used sweet orange (Citrus sinensis) leaf tissue infected with 'Ca. Liberibacter asiaticus' and compared this with healthy controls. Investigation of the host response was examined with citrus microarray hybridization based on 30,171 sets expressed sequence tag sequences from several citrus species and hybrids. The microarray analysis indicated that HLB infection significantly affected expression of 624 genes whose encoded proteins were categorized according to function. The categories included genes associated with sugar metabolism, plant defense, phytohormone, and cell wall metabolism, as well as 14 other gene categories. Young, healthy Valencia sweet orange (C. sinensis) plants were graft inoculated with budwood from Ca. L. asiaticus-infected citrus plants. Prior to the innocualtion, the plants were confirmed to be Ca. L. asiaticus-free in ordinary and quantitative PCR tests. The presence of the bacteria in the inoculated plants was confirmed in both conventional and quantitative PCR with specific primers to Ca. L. asiaticus. The stem and root samples used for RNA extraction and hybridization on Affymetrix microarrays were obtained from three symptomatic and three healthy control trees of similar size, approximately 1 year after inoculation.