Project description:We revealed that, early in infection of human primary B cells, EBV's miRNAs regulate a wide array of immune functions encompassing antigen processing, HLAs and co-stimulatory molecules, and cytokine-cytokine receptor interactions.
Project description:RATIONALE: The Epstein Barr virus can cause cancer and lymphoproliferative disorders. Ganciclovir is an antiviral drug that acts against the Epstein Barr virus. Arginine butyrate may make virus cells more sensitive to ganciclovir. Combining ganciclovir and arginine butyrate may kill more Epstein Barr virus cells and tumor cells.
PURPOSE: Phase I trial to study the effectiveness of arginine butyrate plus ganciclovir in treating patients who have cancer or lymphoproliferative disorders that are associated with the Epstein Barr virus.
Project description:Epstein‐Barr virus (EBV) has evolved exquisite controls over its host cells, human B lymphocytes, not only directing these cells during latency to proliferate and thereby expand the pool of infected cells, but also to survive and thereby persist for the lifetime of the infected individual. Although these activities ensure the virus is successful, they also make the virus oncogenic, particularly when infected people are immunosuppressed. Here we show, strikingly, that one set of EBV’s miRNAs both sustain BL (Burkitt’s lymphoma) cells in the absence of other viral oncogenes and promote the transformation of primary B lymphocytes. Burkitt’s Lymphoma cells were engineered to lose EBV and found to die by apoptosis and could be rescued by constitutively expressing viral miRNAs in them. Two of these EBV miRNAs were found to target Caspase 3 to inhibit apoptosis at physiological concentrations.
Project description:Epstein-Barr virus has been reported to regulate cellular microRNA expression in B cells. In the present study, we investigated the differential microRNAs modulated by Epstein-Barr virus in Naspharyngeal Carcinoma, using CapitalBio corporation's mammalian miRNA arrays. Three cellular models were used in this study: the human naspharyngeal carcinoma cell line TW03 as a blank control; TW03 transfected with Epstein-Barr virus encoded LMP1; TW03 transfected with Epstein-Barr virus encoded LMP2A
Project description:Gene expression profile of AGS gastric carcinoma cell line infected in vitro with Epstein-Barr Virus. Some samples also contain are stably transfected with a dominant negative LMP1 construct.
Project description:Epstein-Barr virus is a gamma-herpes virus that is causally associated with several lymphomas and carcinomas. This virus encodes at least 25 pre-miRNAs, which are expressed in infected cells to yield more than 50 detected mature miRNAs. miRNAs are small, non-coding RNAs that inhibit gene expression by promoting the inhibition of translation or of degradation of mRNAs. Currently, the function of these viral miRNAs and the contribution they provide to EBV's life-cycle remain largely unknown, due to difficulties in identifying cellular and viral genes regulated by these miRNAs. We have compared and contrasted two methods to identify targets of viral miRNAs in order to identify the advantages and limitations of each method to aid in uncovering the functions of EBV's miRNAs. Examination of RISC (RNA Induced Silencing Complexes) associated transcripts under 2 conditions in BJAB cells
Project description:The Epstein-Barr virus nuclear antigen 2 (EBNA2) initiates and maintains the proliferation of infected B cells. In search of additional cellular strategies, that control EBNA2 function, we have performed a label-free mass spectrometry-based quantification of cellular proteins in EBNA2 immuno-precipitates and found polo-like kinase 1 (PLK1) to be bound to EBNA2. EBNA2/PLK1 complex formation is strongly enforced by EBNA2 S379 phosphorylation catalyzed by the mitotic CYCLIN B/CDK1 complex.
Project description:Epstein-Barr virus has been reported to regulate cellular microRNA expression in B cells. In the present study, we investigated the differential microRNAs modulated by Epstein-Barr virus in Naspharyngeal Carcinoma, using CapitalBio corporation's mammalian miRNA arrays.