Project description:As a successful commensal and pathogen of humans, Candida albicans encounters a wide range of environmental changes. Among them, ambient pH is an important factor, which changes frequently and affects many biological processes in this species. The ability to adapt to pH changes is tightly linked with pathogenesis and morphogenesis. In this study, we report that pH has a profound effect on white-opaque switching and sexual mating in C. albicans. Acidic pHs promote white-to-opaque switching but repress sexual mating of opaque cells. The cAMP signaling and Rim101-mediated pH sensing pathways are involved in the regulation of pH-regulated white-opaque switching. Interestingly, white and opaque cells of the cyr1/cyr1 mutant, which is defective in producing cAMP, show distinct growth defects under acidic and alkaline conditions. Phr2 could play a major role in acidic pHs-induced opaque cell formation. We further discover that acidic pH conditions repress sexual mating due to the failure of activation of the Ste2-mediated a-pheromone response pathway. The effects of pH changes on phenotypic switching and sexual mating could be a balance behavior between host adaptation and sexual reproduction.
Project description:The human commensal and opportunistic pathogen Candida albicans can switch between two distinct, heritable cell types, named “white” and “opaque,” which differ in morphology, mating abilities, metabolic preferences, and in their interactions with the host immune system. Previous studies revealed a highly interconnected group of transcriptional regulators that control switching between the two cell types. Here, we identify Ssn6, the C. albicans functional homolog of the Saccharomyces cerevisiae transcriptional co-repressor Cyc8, as a new regulator of white-opaque switching. In a or α mating type strains, deletion of SSN6 results in mass switching from the white to the opaque cell type. Transcriptional profiling of ssn6 deletion mutant strains reveals that Ssn6 represses part of the opaque cell transcriptional program in white cells and the majority of the white cell transcriptional program in opaque cells. Genome-wide chromatin immunoprecipitation experiments demonstrate that Ssn6 is tightly integrated into the opaque cell regulatory circuit and that the positions to which it is bound across the genome strongly overlap with those bound by Wor1 and Wor2, previously identified regulators of white-opaque switching. This work reveals the next layer in the white-opaque transcriptional circuitry by integrating a transcriptional regulator that does not bind DNA directly but instead associates with specific combinations of DNA-bound transcriptional regulators.
Project description:It has been proposed that the ancestral fungus was mating competent and homothallic. However, many mating competent fungi were initially classified as asexual because their mating capacity was hidden behind layers of regulation. For efficient in vitro mating, the essentially obligate diploid ascomycete pathogen C. albicans has to homozygose its mating type locus from MTLa/α to MTLa/a or MTLα/α, and then undergo an environmentally controlled epigenetic switch to the mating competent opaque form. These requirements greatly reduce the potential for C. albicans mating. Deletion of the YciI domain gene OFR1 bypasses the need for C. albicans cells to homozygose the mating type locus prior to switching to the opaque form and mating, and allows homothallic mating of MTL heterozygous strains. This bypass is carbon source dependent and does not occur when cells are grown on glucose. Transcriptional profiling of ofr1 mutant cells shows that in addition to regulating cell type and mating circuitry, Ofr1 is needed for proper regulation of histone and chitin biosynthesis gene expression. It appears that OFR1 is a key regulator in C. albicans, and functions in part to maintain the cryptic mating phenotype of the pathogen. Distruption of OFR1 gene which encodes a Yci1 related domain in Candida ablicans (MTLa/α) is shown to have white-opaque switching related and mating related gene expression. The expression of histone genes are also positively regulated in some conditions.
Project description:The discovery of white-opaque switching in natural MTLa/alpha isolates of Candida albicans sheds new light on the evolution of phenotypic plasticity and host adaptation.
Project description:In Candida albicans, the a1-alpha2 complex represses white-opaque switching as well as mating. A ChIP-chip strategy was, therefore, used to screen for genes with a1-alpha2 binding sites and expression patterns consistent with a master switch gene (MSG). Of 51 genes identified with an a1-alpha2 binding site, one gene, TOS9, also referred to as EAP2, exhibited an expression pattern consistent with a MSG. TOS9 is expressed in opaque, not white a/a and alpha/alpha cells and Tos9p localizes to the opaque cell nucleus. Deletion of TOS9 blocks cells in the white phase, and misexpression in the white phase of the parent tos9+/tos9+ strain results in mass conversion to opaque. Expression of TOS9 under control of a MET promoter rescues the TOS9 null mutant tos9-/tos9- phenotype. Temperature-induced mass conversion of opaque to white in the parent strain results in the immediate cessation of TOS9 transcription, and loss of Tos9p prior to the point of commitment to white (the switch event), which occurs at the time of the second cell doubling. Misexpression of TOS9, as well as inhibition of the second round of DNA replication inhibits the temperature-induced switch from opaque to white. Based on these observations, a model is developed for the regulation and role of TOS9 in switching. Keywords: ChIP chip
Project description:The discovery of white-opaque switching in natural MTLa/alpha isolates of Candida albicans sheds new light on the evolution of phenotypic plasticity and host adaptation. Comparing gene expression of white and opaque cells of a MTL a/alpha strain
Project description:Modes of sexual reproduction in eukaryotic organisms are highly diversified. The human fungal pathogen Candida albicans undergoes a phenotypic switch from the white to the opaque phase in order to become mating-competent. In this study, we report that functionally and morphologically differentiated white and opaque cells show a coordinating behavior in the process of mating. Although white cells are mating-incompetent, they are induced to produce sexual pheromones when treated with opposite pheromones or interacted with opaque cells of an opposite mating type. In a co-culture system, pheromones released by white cells induce opaque cells to form mating projections and thus facilitate both opposite- and same-sex mating of opaque cells. Deletion of genes encoding the pheromone precursor proteins and inactivation of the pheromone response signaling pathway (Ste2-MAPK-Cph1) impair the promoting role of white cells (MTLa) in sexual mating of opaque cells. White and opaque cells communicate via a paracrine pheromone signaling and thus create an environment conducive to sexual mating. This coordination behavior of the two different cell types may be a trade-off strategy between sexual and asexual lifestyles in C. albicans.