Project description:Spatial organization of the transcriptome has emerged as a powerful means for regulating the post-transcriptional fate of RNA in eukaryotes; however, whether prokaryotes use RNA spatial organization as a mechanism for post-transcriptional regulation remains unclear. Here we used super-resolution microscopy to image the E. coli transcriptome and observed a genome-wide spatial organization of RNA: mRNAs encoding inner-membrane proteins are enriched at the membrane, whereas mRNAs encoding outer-membrane, cytoplasmic and periplasmic proteins are distributed throughout the cytoplasm. Membrane enrichment is caused by co-translational insertion of signal peptides recognized by the signal-recognition particle. Our time-resolved RNA-sequencing and live-cell super-resolution imaging experiments revealed a physiological consequence of this spatial organization and the underlying mechanism: membrane localization enhances degradation rates of inner-membrane-protein mRNAs by placing them in proximity to membrane-bound RNA degradation enzymes. Together, these results demonstrate that the bacterial transcriptome is spatially organized and that this organization shapes the posttranscriptional Spatial organization of the transcriptome has emerged as a powerful means for regulating the post-transcriptional fate of RNA in eukaryotes; however, whether prokaryotes use RNA spatial organization as a mechanism for post-transcriptional regulation remains unclear. Here we used super-resolution microscopy to image the E. coli transcriptome and observed a genome-wide spatial organization of RNA: mRNAs encoding inner-membrane proteins are enriched at the membrane, whereas mRNAs encoding outer-membrane, cytoplasmic and periplasmic proteins are distributed throughout the cytoplasm. Membrane enrichment is caused by co-translational insertion of signal peptides recognized by the signal-recognition particle. Our time-resolved RNA-sequencing and live-cell super-resolution imaging experiments revealed a physiological consequence of this spatial organization and the underlying mechanism: membrane localization enhances degradation rates of inner-membrane-protein mRNAs by placing them in proximity to membrane-bound RNA degradation enzymes. Together, these results demonstrate that the bacterial transcriptome is spatially organized and that this organization shapes the post-transcriptional dynamics of mRNAs.
Project description:In Escherichia coli crosstalk between DNA supercoiling, nucleoid-associated proteins and major RNA polymerase σ initiation factors regulates growth phase-dependent gene transcription. We show that the highly conserved spatial ordering of relevant genes along the chromosomal replichores largely corresponds both to their temporal expression patterns during growth and to an inferred gradient of DNA superhelical density from the origin to the terminus. Genes implicated in similar functions are related mainly in trans across the chromosomal replichores, whereas DNA-binding transcriptional regulators interact predominantly with targets in cis along the replichores. We also demonstrate that macrodomains (the individual structural partitions of the chromosome) are regulated differently. We infer that spatial and temporal variation of DNA superhelicity during the growth cycle coordinates oxygen and nutrient availability with global chromosome structure, thus providing a mechanistic insight into how the organization of a complete bacterial chromosome encodes a spatiotemporal program integrating DNA replication and global gene expression.
Project description:To fit within the confines of the cell, bacterial chromosomes are highly condensed into a structure called the nucleoid. Despite the high degree of compaction in the nucleoid, the genome remains accessible to essential biological processes, such as replication and transcription. Here, we present the first high-resolution chromosome conformation capture-based molecular analysis of the spatial organization of the Escherichia coli nucleoid during rapid growth in rich medium and following an induced amino acid starvation that promotes the stringent response. Our analyses identify the presence of origin and terminus domains in exponentially growing cells. Moreover, we observe an increased number of interactions within the origin domain and significant clustering of SeqA-binding sequences, suggesting a role for SeqA in clustering of newly replicated chromosomes. By contrast, ‘histone-like’ protein (i.e. Fis, IHF and H-NS) binding sites did not cluster, and their role in global nucleoid organization does not manifest through the mediation of chromosomal contacts. Finally, genes that were downregulated after induction of the stringent response were spatially clustered, indicating that transcription in E. coli occurs at transcription foci.
Project description:To fit within the confines of the cell, bacterial chromosomes are highly condensed into a structure called the nucleoid. Despite the high degree of compaction in the nucleoid, the genome remains accessible to essential biological processes, such as replication and transcription. Here, we present the first high-resolution chromosome conformation capture-based molecular analysis of the spatial organization of the Escherichia coli nucleoid during rapid growth in rich medium and following an induced amino acid starvation that promotes the stringent response. Our analyses identify the presence of origin and terminus domains in exponentially growing cells. Moreover, we observe an increased number of interactions within the origin domain and significant clustering of SeqA-binding sequences, suggesting a role for SeqA in clustering of newly replicated chromosomes. By contrast, ‘histone-like’ protein (i.e. Fis, IHF and H-NS) binding sites did not cluster, and their role in global nucleoid organization does not manifest through the mediation of chromosomal contacts. Finally, genes that were downregulated after induction of the stringent response were spatially clustered, indicating that transcription in E. coli occurs at transcription foci. A 4 chips study of exponentially growing wild type E. coli strain MG1655 grown in LB rich media or after induction of the stringent response by serine hydroxamate for 30 min. Two technical replicates, Three biological replicates mixed prior hybridization on the chip.
Project description:GCC was used to determine the structure of E. coli grown in LB or treated with SHX. The bacterial genome is highly condensed into a nucleoid structure. Here we present global analyses of the genome spatial organization for two γ-proteobacteria: Escherichia coli and Pseudomonas aeruginosa by Genome Conformation Capture. Long distance interactions occurred within the E. coli and P. aeruginosa nucleoids with frequencies that were affected by growth condition and gene dosage. Spatial clustering of genes that are either up or down-regulated depended on the environmental signals, indicating a non-random functional organization of the nucleoid. The largest changes in gene expression upon amino acid starvation occurred in genes that participate in long-range interactions. These genes remained highly spatially clustered when transcript levels decreased. Environment specific interactions were related to DNA motifs but did not correlate with binding sites for nucleoid associated proteins. Overall we identify spatial organization as a significant factor in bacterial gene regulation and suggest that the prokaryotic operon is not simply a linear entity.
Project description:Cellular respiration is a fundamental process undergone within energy-transducing membranes through the redox activity of multimeric protein assemblies, so-called respiratory complexes. In most cases, electron transport is ensured by lipophilic molecules, quinones, serving as electron shuttles. This redox activity is coupled to the net translocation of protons across the membrane thereby establishing an electrochemical gradient, the protonmotive force (pmf). Such a gradient powers the transport of molecules (such as proteins, ions or antibiotics) and ATP synthesis but was also shown to participate in protein localization in prokaryotes. Importantly, energy-transducing membranes show a high level of organization with heterogeneous distribution of respiratory complexes as observed across several bacterial lineages. Although electron transport in energy-transducing membranes is considered to be a kinetic process coupled to the diffusion of all reactants and in particular quinones, it is not clear to which extent subcellular distribution of respiratory complexes can have an influence on the overall kinetics. We previously evidenced polar clustering of nitrate reductase, NarGHI, an anaerobic respiratory complex in the gut bacterium Escherichia coli. Such spatial organization was shown to directly impact the electron flux of the associated respiratory chain. While dynamic localization of such complex plays an important role in controlling respiration, the mechanism by which it impacts the electron flux is not understood. Yet, under such conditions where nitrate is the sole terminal electron acceptor, functioning of the electron transport chain in enteric bacteria such as E. coli and Salmonella typhimurium is associated with the production of nitric oxide (NO) mainly resulting from the reduction of nitrite by nitrate reductase. As a consequence, both E. coli and S. typhimurium produce a multitude of enzymes controlling NO homeostasis, the primary source of nitrosative stress. Protein S-nitrosylation is a ubiquitous NO-dependent post-translational modification of cysteine that regulates protein structure and function. Recently, Seth et al demonstrated that, in absence of oxygen, NO oxidation is mainly catalyzed by the hybrid cluster protein Hcp allowing its further reaction with thiols of a broad spectrum of proteins. Among Hcp-dependent S-nitrosylated targets are the nitrate reductase complex, multiple metabolic enzymes and the transcription factor OxyR whose S-nitrosylation entails a distinct nitrosative stress regulon. Optimizing electron transport through clustering of nitrate reductase will lead to nitrite accumulation which may in turn be responsible for NO production. Here, the electron-donating respiratory complex, the formate dehydrogenase, FdnGHI was shown to cluster at the poles under nitrate respiring conditions. Its proximity with the nitrate reductase complex was confirmed by evaluating the interactome of the later under distinct metabolic conditions reported to impact its subcellular organization. All the identified partners were exclusively found when cells were grown under nitrate respiration. The proximity of two respiratory complexes provides mechanistic explanation on the importance of subcellular organization onto quinone pool turnover. Noteworthy is the identification of several components playing key roles in the protection against endogenous nitrosative stress.
Project description:Extraintestinal pathogenic Escherichia coli (ExPEC) is a common bacterial strain causing diverse diseases in humans and animals. To analyse the detailed mechanisms underlying ExPEC-mediated sepsis in humans, the transcriptome response of mice at 3h,6h, and 12h after ExPEC infection was analyzed by RNA-seq of mouse spleen samples.
Project description:We replaced the natural pnp locus with the human cDNA and studied the transcriptomes of 3 strains, namely the wt pnp+ (C-1a), the mutant with pnp ORF deletion (C-5691) and the strain with the substitution of the bacterial ORF with the human one (C-6001).
Project description:Bacterial transcription factors (TFs) regulate gene expression to adapt to changing environments; when combined, the TF’s regulatory actions comprise transcriptional regulatory networks (TRNs). The chromatin immunoprecipitation (ChIP) assay is the major contemporary method for mapping in vivo protein-DNA interactions in the genome. It enables the genome-wide study of transcription factor binding sites (TFBSs) and gene regulation. Here, we present the genome-wide binding for major TFs in E. coli K-12 MG1655.