Project description:Analysis of the effects of sleep deprivation, recovery sleep, and three time-of-day controls on seven brain regions laser microdissected from mouse brain. The regions include the locus coeruleus, suprachiasmatic nucleus, hypocretin area, tuberomammillary nucleus, orbital cortex, posteromedial cortical amygdala, and entorhinal cortex.
Project description:Small RNAs play a critical role in host-pathogen interaction. In insects, for instance, small RNA-mediated silencing or RNA interference (RNAi) represents the main antiviral defense system. However, the antiviral role of RNAi has not been clearly proven in higher vertebrates. On the contrary, it is well established that the cell response relies on the recognition of viral RNAs by host pattern recognition receptors (PRR) to trigger the activation of the interferon pathway. Based on this evidence, we wished to contribute to this research field by identifying and characterizing small non-coding RNAs produced in mammalian cells upon RNA virus infection. We focused on Sindbis virus (SINV), the prototypical arbovirus, which by definition, is able to infect both vertebrate hosts and invertebrate vectors and triggers the interferon pathway or RNAi, respectively.
Project description:An unexpected human outbreak of the mosquitoborne Sindbis virus occurred in a previously nonendemic area of Sweden. At follow-up, 6-8 months after infection, 39% of patients had chronic arthralgia that affected their daily activities. Vectorborne infections may disseminate rapidly into new areas and cause acute and chronic disease.
Project description:The structure of the lipid-enveloped Sindbis virus has been determined by fitting atomic resolution crystallographic structures of component proteins into an 11-A resolution cryoelectron microscopy map. The virus has T=4 quasisymmetry elements that are accurately maintained between the external glycoproteins, the transmembrane helical region, and the internal nucleocapsid core. The crystal structure of the E1 glycoprotein was fitted into the cryoelectron microscopy density, in part by using the known carbohydrate positions as restraints. A difference map showed that the E2 glycoprotein was shaped similarly to E1, suggesting a possible common evolutionary origin for these two glycoproteins. The structure shows that the E2 glycoprotein would have to move away from the center of the trimeric spike in order to expose enough viral membrane surface to permit fusion with the cellular membrane during the initial stages of host infection. The well-resolved E1-E2 transmembrane regions form alpha-helical coiled coils that were consistent with T=4 symmetry. The known structure of the capsid protein was fitted into the density corresponding to the nucleocapsid, revising the structure published earlier.
Project description:The role of RNA silencing as a defense mechanism against viruses remains to be formerly established in mammalian somatic cells. Here, we determined the antiviral properties of human and Drosophila Dicer proteins in a heterologous setup. We expressed human Dicer (hDicer) in Drosophila, and Drosophila Dicer-2 in human cells, and measured the impact on the response to Sindbis virus (SINV) infection. In flies, hDicer presents a low processing activity, but partially rescues a Dcr2 null mutation in flies. Expression of Dicer-2 in HEK293 cells allows the processing of SINV RNA into 21-nt-long small RNAs. Nevertheless, instead of conferring a protective effect against SINV, Dicer-2 expression increases viral replication in HEK293 cells. We present evidence that this effect is due to a competition with the interferon pathway. Our results therefore suggest that adding functionial RNA silencing machinery in IFN-competent differentiated mammalian cells can be detrimental for antiviral defense.