Project description:Trichophyton rubrum, an anthropophilic and cosmopolitan fungus, is the most common agent of superficial mycoses, causing rarely deep dermatophytosis in immunocompromised hosts.
Project description:Trichophyton rubrum, an anthropophilic and cosmopolitan fungus, is the most common agent of superficial mycoses, causing rarely deep dermatophytosis in immunocompromised hosts. In this study, an infection condition of T. rubrum was modeled by adding human skin sections into a limited medium containing glucose to monitor T. rubrum gene expression patterns using cDNA microarrays on a global level. We found that exposure to human skin resulted in up-regulation of the expression levels of T. rubrum genes related to many cellular and biological processes, including transcription and translation, metabolism and secondary transport, stress response, and signaling pathways. These results provide a reference set of T. rubrum genes whose expression patterns change upon infection and reveal previously unknown genes that probably corresponding to proteins that should be considered as virulence factor candidates and potential new drug targets for T. rubrum infections.
Project description:Dermatophytes are highly specialized filamentous fungi which cause the majority of superficial mycoses in humans and animals. The high secreted proteolytic activity of these microorganisms during growth on proteins is assumed to be linked with their particular ability to exclusively infect keratinized host structures such as skin stratum corneum, hair and nails. Individual secreted dermatophyte proteases were recently described and linked with the in vitro digestion of keratin. However, the overall adaptation and transcriptional response of dermatophytes during protein degradation is largely unknown. To address this question, we constructed a cDNA microarray for the human pathogenic dermatophyte Trichophyton rubrum, which is based on transcripts of the fungus grown on proteins. Gene expression profiling during growth of T. rubrum on soy and keratin displayed the activation of a large set of genes encoding endo- and exoproteases. In addition, other specifically induced factors with potential implication in protein utilization were identified, including heat shock proteins, transporters, metabolic enzymes, transcription factors and hypothetical proteins with unknown function. This broad-scale transcriptional analysis of dermatophytes during growth on proteins reveals new putative pathogenicity related host adaptation mechanism of these human pathogenic fungi. Keywords: Two-condition experiment, strong proteolytic activity in the supernatant versus no proteolytic activity