Project description:Trichophyton rubrum, an anthropophilic and cosmopolitan fungus, is the most common agent of superficial mycoses, causing rarely deep dermatophytosis in immunocompromised hosts.
Project description:Trichophyton rubrum, an anthropophilic and cosmopolitan fungus, is the most common agent of superficial mycoses, causing rarely deep dermatophytosis in immunocompromised hosts. In this study, an infection condition of T. rubrum was modeled by adding human skin sections into a limited medium containing glucose to monitor T. rubrum gene expression patterns using cDNA microarrays on a global level. We found that exposure to human skin resulted in up-regulation of the expression levels of T. rubrum genes related to many cellular and biological processes, including transcription and translation, metabolism and secondary transport, stress response, and signaling pathways. These results provide a reference set of T. rubrum genes whose expression patterns change upon infection and reveal previously unknown genes that probably corresponding to proteins that should be considered as virulence factor candidates and potential new drug targets for T. rubrum infections.
Project description:Trichophyton rubrum is a pathogenic fungus infecting human skin, hairs and nails. These substrates are low in most nutrients required for fungal growth and consequently are colonized only by very few fungal species. Especially, concentration of trace elements is low and a limiting factor for fungal growth. T. rubrum is a highly specialist fungus and adapted to this environment. By in-vitro experiments, we analyzed the influence of trace-elements on mRNA expression. We measured gene expression by RNAseq of two T. rubrum strains, STRB008 and STRB012, in three different cultivation condition, each in 6 replications. Keratin medium, without sugar supply, was used as basic medium. In the second condition, we added trace-elements to the keratin medium. In the third condition, we added glucose. We point to the evolutionary adaption of the fungus to the human skin. T. rubrum has a sophisticated system for the digestion and utilization of human skin protein and a relative low demand for trace-elements.
Project description:Under the action of Trichophyton 1000 UG / ml, the colony of Trichophyton mentagrophyte was completely inhibited. The spore number and germination rate of Trichophyton mentagrophyte under the action of 100ug / ml and 10ug / ml were significantly lower than those in the control group. Under the action of Trichophyton, the mitochondria in the mycelium of Trichophyton mentagrophyte were cleaved. Under the action of trichomycin, the related genes in mitochondria decreased significantly. This showed that mitochondria were obviously damaged during trichomycin treatment. It is speculated that Trichophyton can cause mitochondrial damage and reduce the efficiency of respiratory chain, but Trichophyton can synthesize enough ATP by regulating related ATP synthase to resist the invasive effect caused by Trichophyton stimulation.
Project description:Trichophyton mentagrophytes (T. mentagrophytes) is a prevalent pathogen that causes human and animal dermatophytosis. The clinical treatment of these infections is challenging due to the prolonged treatment duration, limited efficacy, antifungal resistance and side effects of existing drugs. It has been reported that the classic Traditional Chinese medicine (TCM) prescription Huangqin decoction (HQD) along with its principal ingredients could exhibit antifungal properties. Given the valued advantages of TCM such as broad-spectrum antifungal activity, low incidence of drug resistance and low toxicity, this study investigated the antifungal activity of HQD against T. mentagrophytes and explored the potential inhibitory mechanism, aimed to provide new clues for the treatment of dermatophytosis. By detecting minimal inhibitory concentration (MIC) using the broth microdilution method, the result showed that HQD could significantly inhibit the growth of T. mentagrophytes, with a MIC of 3.13 mg/mL. The transcriptome sequencing and quantitative real-time PCR (qRT-PCR) technology were combined to shed light on the complicated adaptive responses of T. mentagrophytes upon HQD. The results demonstrated that a total of 730 differentially expressed genes (DEGs) were detected in T. mentagrophytes after HQD exposure, of which 547 were up-regulated and 183 were down-regulated. These DEGs were abundant in “single-organism metabolic process”, “catalytic activity” and “oxidoreductase activity”, and were significantly enriched in seven signaling pathways including glutathione metabolism, DNA replication, glyoxylate and dicarboxylate metabolism, taurine and hypotaurine metabolism, carotenoid biosynthesis, ubiquitin mediated proteolysis, and cyanoamino acid metabolism. The results of transcriptome profiling were verified using qRT-PCR for a subset of 10 DEGs. The overall evidence indicated that HQD had a significant anti-dermatophyte activity through the modulation of glutathione metabolism by regulating GST, γ-GT genes, the inhibition of DNA replication pathway by downgrading MCM3, MCM5, RNaseH1 genes, and the repressed expression of PSD gene related to phospholipid synthesis in T. mentagrophytes.