Project description:Stimulated primary keratinocytes with mature IL-36B cytokine and analysed differential mRNA expression at 8 h timepoint IL-36B induced gene expression in primary human neonatal keratinocytes was measured at 8 hours after exposure to dose IL-36B (5 nM).
Project description:Analysis of induced keratinocyte stem cells from male/female urine cells (MiKSC/FiKSC) by defined transcription factors vs. foreskin derived primary human neonatal epidermal keratinocytes (pKC) and male/female urine cells (MUC/FUC). Results provide insight into molecular similarities between induced keratinocyte stem cells and human foreskin derived primary human neonatal epidermal keratinocytes.
Project description:To delineate mechanisms for psoriasis pathogenesis driven by the interleukin-17A, proteomic dysregulations were studied in a Human Primary Keratinocyte model system. Label-free quantification was performed and fold-changes were obtained for abundances of proteins in IL-17A treated keratinocytes versus those from IL-17A treated keratinocytes.
Briefly, Human Primary Keratinocytes were isolated and treated with the cytokine IL-17A (50ng/ml) in incomplete media devoid of any growth factors. Tryptic digested and desalted peptide samples were injected in Thermoscientific Q-Exactive Plus instruments through EasyNLC HPLC autosampler. The instruments were set to MS1 resolution of 70000 and MS2 resolution of 17500. The acquisition experiments were optimized to run on 120 min gradients.
The MS spectra were analyzed using the Thermoscientific mass informatics platform Proteome discoverer version 2.2. The common workflows for discovery proteomics were used with Mascot and SequestHT as search engines.
This dataset helped to simulate the IL-17A-driven inflammation in keratinocytes and uncovered many putative druggable targets in the context of psoriasis.
Project description:Hair follicle formation depends on reciprocal epidermal-dermal interactions and occurs during skin development, but not in adult life. This suggests that the properties of dermal fibroblasts change during postnatal development. To examine this, we used a PdgfraEGFP mouse line to isolate GFP-positive fibroblasts from neonatal skin, adult telogen and anagen skin and adult skin in which ectopic hair follicles had been induced (EF skin) by transgenic epidermal activation of beta-catenin. We also isolated epidermal cells from each mouse. The gene expression profile of EF epidermis was most similar to that of anagen epidermis, consistent with activation of beta-catenin signalling. In contrast, adult dermis with ectopic hair follicles more closely resembled neonatal dermis than adult telogen or anagen dermis. In particular, genes associated with mitosis were upregulated and extracellular matrix-associated genes were downregulated in neonatal and EF fibroblasts. We confirmed that sustained epidermal beta-catenin activation stimulated fibroblasts to proliferate to reach the high cell density of neonatal skin. In addition, the extracellular matrix was comprehensively remodelled, with mature collagen being replaced by collagen subtypes normally present only in developing skin. The changes in proliferation and extracellular matrix composition originated from a specific subpopulation of fibroblasts located beneath the sebaceous gland. Our results show that adult dermis is an unexpectedly plastic tissue that can be reprogrammed to acquire the molecular, cellular and structural characteristics of neonatal dermis in response to cues from the overlying epidermis. We have isolated the following populations of cells from mouse back skin by flow cytometry: 1A) GFP+ WT neonatal dermal fibroblasts, 1B) ItgA6+ WT neonatal epidermal keratinocytes, 2A) GFP+ WT telogen dermal fibroblasts, 2B) ItgA6+ WT telogen epidermal keratinocytes, 3A) GFP+ D2 transient activation (anagen) dermal fibroblasts, 3B) ItgA6+ D2 transient activation (anagen) epidermal keratinocytes, 4A) GFP+ D2 sustained activation (ectopic follicles) dermal fibroblasts, 4B) ItgA6+ D2 sustained activation (ectopic follicles) epidermal keratinocytes
Project description:Analysis of cultured epidermal keratinocytes treated with interleukin-4 (IL-4) and interleukin-13 (IL-13). IL-4 and IL-13 are up-regulated in atopic dermatitis. Results provide insight into the role of IL-4 and IL-13 cytokines in the pathogenesis of atopic dermatitis. Analysis of epidermal keratinocytes transfected with dual oxidase 1 (DUOX1) siRNA knockdown before treatment with IL-4 and IL-13. DUOX1 is one of the NOX family members of NADPH oxidases whose primary function is ROS generation. Results provide insight into the role of the incraesed expression of DUOX1 in IL-4/IL-13-treated NHEK for IL4/IL13 signaling. IL-4 and IL-13 induced gene expression in human epidermal keratinocytes (NHEK) was measured at 48 hours. Gene expression in NHEK tranfected with 10 nM DUOX1 siRNA followed by treatment with 100 ng/ml IL-4 and 100 ng/ml IL-13 was measured at 48 hours. Three independent experiments were performed using different strains for each experiment.
Project description:Analysis of cultured epidermal keratinocytes treated with interleukin-4 (IL-4) and interleukin-13 (IL-13). IL-4 and IL-13 are up-regulated in atopic dermatitis. Results provide insight into the role of IL-4 and IL-13 cytokines in the pathogenesis of atopic dermatitis. Analysis of epidermal keratinocytes transfected with dual oxidase 1 (DUOX1) siRNA knockdown before treatment with IL-4 and IL-13. DUOX1 is one of the NOX family members of NADPH oxidases whose primary function is ROS generation. Results provide insight into the role of the incraesed expression of DUOX1 in IL-4/IL-13-treated NHEK for IL4/IL13 signaling.