Project description:a chromosome-level nuclear genome and organelle genomes of the alpine snow alga Chloromonas typhlos were sequenced and assembled by integrating short- and long-read sequencing and proteogenomic strategy
Project description:In this study, we used a barcoding-based synthetic long read (SLR) isoform sequencing approach (LoopSeq) to generate sequencing reads sufficiently long and accurate to identify isoforms using standard short read Illumina sequencers.
Project description:In this study, we used a barcoding-based synthetic long read (SLR) isoform sequencing approach (LoopSeq) to generate sequencing reads sufficiently long and accurate to identify isoforms using standard short read Illumina sequencers.
Project description:In this study, we used a barcoding-based synthetic long read (SLR) isoform sequencing approach (LoopSeq) to generate sequencing reads sufficiently long and accurate to identify isoforms using standard short read Illumina sequencers.
Project description:Alternative splicing is widely acknowledged to be a crucial regulator of gene expression and is a key contributor to both normal developmental processes and disease states. While cost-effective and accurate for quantification, short-read RNA-seq lacks the ability to resolve full-length transcript isoforms despite increasingly sophisticated computational methods. Long-read sequencing platforms such as Pacific Biosciences (PacBio) and Oxford Nanopore (ONT) bypass the transcript reconstruction challenges of short-reads. Here we describe TALON, the ENCODE4 pipeline for analyzing PacBio cDNA and ONT direct-RNA transcriptomes. We apply TALON to three human ENCODE Tier 1 cell lines and show that while both technologies perform well at full-transcript discovery and quantification, each technology has its distinct artifacts. We further apply TALON to mouse cortical and hippocampal transcriptomes and find that a substantial proportion of neuronal genes have more reads associated with novel isoforms than annotated ones. The TALON pipeline for technology-agnostic, long-read transcriptome discovery and quantification tracks both known and novel transcript models as well as expression levels across datasets for both simple studies and larger projects such as ENCODE that seek to decode transcriptional regulation in the human and mouse genomes to predict more accurate expression levels of genes and transcripts than possible with short-reads alone.
Project description:The Zika outbreak, spread by the Aedes aegypti mosquito, highlights the need to create high-quality assemblies of large genomes in a rapid and cost-effective fashion. Here, we combine Hi-C data with existing draft assemblies to generate chromosome-length scaffolds. We validate this method by assembling a human genome, de novo, from short reads alone (67X coverage, Sample GSM1551550). We then combine our method with draft sequences to create genome assemblies of the mosquito disease vectors Aedes aegypti and Culex quinquefasciatus, each consisting of three scaffolds corresponding to the three chromosomes in each species. These assemblies indicate that virtually all genomic rearrangements among these species occur within, rather than between, chromosome arms. The genome assembly procedure we describe is fast, inexpensive, accurate, and can be applied to many species.
2017-03-24 | GSE95797 | GEO
Project description:VODKA2: A fast and accurate method to detect non-standard viral genomes from large RNA-seq datasets