Project description:The suppression of oncogenic levels of MYC is sufficient to induce sustained tumor regression associated with proliferative arrest, differentiation, cellular senescence and/or apoptosis, a phenomenon known as oncogene addiction. However, after prolonged inactivation of MYC in a conditional transgenic mouse model of Em-tTA/tetO-MYC T-acute lymphomablastic lymphoma (T-ALL), some of the tumors recur, recapitulating what is frequently observed in human tumors in response to targeted therapies. Here we report that these recurring lymphomas express high levels of either transgenic or endogenous Myc suggesting that tumors continue to be addicted to oncogenic levels of MYC. Many of the recurring lymphomas (76%) harbored mutations in the tetracycline transactivator (tTA) resulting in expression of the MYC transgene even in the presence of doxycycline. Many of the remaining recurring tumors expressed high levels of endogenous Myc which was in some cases associated with a genomic rearrangement of the endogenous Myc locus or overexpression of Notch1. Gene expression profiling confirmed that the primary and recurring tumors have highly similar transcriptomes. Importantly, shRNA-mediated suppression of the high levels of MYC in recurring tumors elicited both suppression of proliferation and increased apoptosis confirming that these tumors remain oncogene addicted. These results suggest that tumors caused by MYC overexpression remain addicted to high levels of expression of this oncogene. 13 samples, no replicates included
Project description:Tumors driven by activation of the transcription factor Myc generally show oncogene addiction. However, the gene-expression programs that depend upon sustained Myc activity in those tumors remain unknown. We have addressed this issue in a model of liver carcinoma driven by a reversible tet-Myc transgene, combining gene expression profiling with the mapping of Myc and RNA Polymerase II on chromatin. Switching off the oncogene in advanced carcinomas revealed that Myc is required for the continuous activation and repression of distinct sets of genes, constituting no more than half of those deregulated during tumor progression, and an even smaller subset of all Myc-bound genes. We further showed that a Myc mutant unable to associate with the co-repressor protein Miz1 is defective in the initiation of liver tumorigenesis. Altogether, our data provide the first detailed analysis of a Myc-dependent transcriptional program in a fully developed carcinoma, revealing that the critical effectors of Myc in tumor maintenance must be included within defined subsets (ca. 1,300 each) of activated and repressed genes.
Project description:Tumors driven by activation of the transcription factor Myc generally show oncogene addiction. However, the gene-expression programs that depend upon sustained Myc activity in those tumors remain unknown. We have addressed this issue in a model of liver carcinoma driven by a reversible tet-Myc transgene, combining gene expression profiling with the mapping of Myc and RNA Polymerase II on chromatin. Switching off the oncogene in advanced carcinomas revealed that Myc is required for the continuous activation and repression of distinct sets of genes, constituting no more than half of those deregulated during tumor progression, and an even smaller subset of all Myc-bound genes. We further showed that a Myc mutant unable to associate with the co-repressor protein Miz1 is defective in the initiation of liver tumorigenesis. Altogether, our data provide the first detailed analysis of a Myc-dependent transcriptional program in a fully developed carcinoma, revealing that the critical effectors of Myc in tumor maintenance must be included within defined subsets (ca. 1,300 each) of activated and repressed genes.
Project description:The suppression of oncogenic levels of MYC is sufficient to induce sustained tumor regression associated with proliferative arrest, differentiation, cellular senescence and/or apoptosis, a phenomenon known as oncogene addiction. However, after prolonged inactivation of MYC in a conditional transgenic mouse model of Em-tTA/tetO-MYC T-acute lymphomablastic lymphoma (T-ALL), some of the tumors recur, recapitulating what is frequently observed in human tumors in response to targeted therapies. Here we report that these recurring lymphomas express high levels of either transgenic or endogenous Myc suggesting that tumors continue to be addicted to oncogenic levels of MYC. Many of the recurring lymphomas (76%) harbored mutations in the tetracycline transactivator (tTA) resulting in expression of the MYC transgene even in the presence of doxycycline. Many of the remaining recurring tumors expressed high levels of endogenous Myc which was in some cases associated with a genomic rearrangement of the endogenous Myc locus or overexpression of Notch1. Gene expression profiling confirmed that the primary and recurring tumors have highly similar transcriptomes. Importantly, shRNA-mediated suppression of the high levels of MYC in recurring tumors elicited both suppression of proliferation and increased apoptosis confirming that these tumors remain oncogene addicted. These results suggest that tumors caused by MYC overexpression remain addicted to high levels of expression of this oncogene.
Project description:SILAC based protein correlation profiling using size exclusion of protein complexes derived from Mus musculus tissues (Heart, Liver, Lung, Kidney, Skeletal Muscle, Thymus)
Project description:Introgressed variants from other species can be an important source of genetic variation because they may arise rapidly, can include multiple mutations on a single haplotype, and have often been pretested by selection in the species of origin. Although introgressed alleles are generally deleterious, several studies have reported introgression as the source of adaptive alleles-including the rodenticide-resistant variant of Vkorc1 that introgressed from Mus spretus into European populations of Mus musculus domesticus. Here, we conducted bidirectional genome scans to characterize introgressed regions into one wild population of M. spretus from Spain and three wild populations of M. m. domesticus from France, Germany, and Iran. Despite the fact that these species show considerable intrinsic postzygotic reproductive isolation, introgression was observed in all individuals, including in the M. musculus reference genome (GRCm38). Mus spretus individuals had a greater proportion of introgression compared with M. m. domesticus, and within M. m. domesticus, the proportion of introgression decreased with geographic distance from the area of sympatry. Introgression was observed on all autosomes for both species, but not on the X-chromosome in M. m. domesticus, consistent with known X-linked hybrid sterility and inviability genes that have been mapped to the M. spretus X-chromosome. Tract lengths were generally short with a few outliers of up to 2.7 Mb. Interestingly, the longest introgressed tracts were in olfactory receptor regions, and introgressed tracts were significantly enriched for olfactory receptor genes in both species, suggesting that introgression may be a source of functional novelty even between species with high barriers to gene flow.
Project description:SILAC based protein correlation profiling using size exclusion of protein complexes derived from seven Mus musculus tissues (Heart, Brain, Liver, Lung, Kidney, Skeletal Muscle, Thymus)
Project description:We created mice, which are deficient for Myc specifically in cardiac myocytes by crossing crossed Myc-floxed mice (Mycfl/fl) and MLC-2VCre/+ mice. Serial analysis of earlier stages of gestation revealed that Myc-deficient mice died prematurely at E13.5-14.5. Morphological analyses of E13.5 Myc-null embryos showed normal ventricular size and structure; however, decreased cardiac myocyte proliferation and increased apoptosis was observed. BrdU incorporation rates were also decreased significantly in Myc-null myocardium. Myc-null mice displayed a 3.67-fold increase in apoptotic cardiomyocytes by TUNEL assay. We examined global gene expression using oligonucleotide microarrays. Numerous genes involved in mitochondrial death pathways were dysregulated including Bnip3L and Birc2. Keywords: wildtype vs Myc-null