Project description:The human-derived serotype Ⅴ ST1 GBS strains NNA038 and NNA048 was isolated from a amniotic fluid of full-term pregnant woman who suffered from premature rupture of membrane in China.Serotype Ia ST7 GBS strain YM001 is an attenuated strain ,its parent strain HN016 was isolated from an outbreak epidemical disease in tilapia from China.HN016_KO_D2 is a knockout strain from Serotype Ia ST7 GBS strain HN016.
Project description:Identification of Genes and Genomic Islands Correlated with High Pathogenicity through Tilling Microarray-Based Comparative Genomics in S. suis. Streptococcus suis is an important zoonotic pathogen that can cause meningitis and sepsis in both pigs and humans. S. suis isolates have been categorized into groups of different levels of pathogenicity, with sequence type (ST) ST1 clonal complex strains having a higher degree of virulence than other STs. However, the genetic basis of the differences in pathogenicity is still poorly understood. In this study, a comprehensive genomic comparison of 31 S. suis strains from different clinical sources with the genome sequence of the high pathogenicity (HP) strain GZ1 was conducted using NimbleGen’s tilling microarray platform.
Project description:Regulation of gene expression in response to variable and often adverse environmental conditions is an essential component of microbial pathogenesis. We identified the two-component regulatory system CiaRH in a screen for genes essential for the survival of Streptococcus agalactiae (Group B Streptococcus, GBS) on exposure to in vitro models of environmental stress. We constructed site-directed, non-polar deletion mutations in the regulator gene ciaR and compared the growth of CiaR mutant GBS to wild-type GBS under stressed conditions. CiaR mutant GBS are more sensitive than wild-type GBS to elevated temperature, low pH, chemical mutagens and ultraviolet light; the mutants are also more sensitive to cell-wall active antibiotics and antimicrobial peptides. CiaR mutant strains are markedly attenuated in a mouse model of GBS sepsis. To determine the genes regulated by CiaR that account for these defects, transcriptional profiling was performed using DNA microarray analysis, comparing wild-type GBS to CiaR mutant GBS under non-stressed conditions.
Project description:Streptococcus agalactiae (Group B Streptococcus, GBS) is a leading cause of early-onset neonatal bacterial infection. Evasion of innate immune defenses is critical to neonatal GBS disease pathogenesis. Effectors of the innate immune system such as antimicrobial peptides, as well as numerous antibiotics, target the peptidoglycan layer of the gram positive bacterial cell wall. The intramembrane-sensing histidine kinase class of two-component regulatory systems has recently been identified as important to the gram-positive response to cell wall stress. We identified and characterized the GBS homolog of LiaR, the response regulator component of the LiaFSR system and constructed site-directed, non-polar deletion mutations in the regulator gene liaR. GBS LiaR deletion mutant strains are more susceptible to cell wall active antibiotics (vancomycin and bacitracin) as well as antimicrobial peptides (colistin, nisin and the human cathelicidin LL-37) compared to isogenic wild-type GBS. LiaR mutant GBS are significantly attenuated in mouse models of both GBS sepsis and GBS pneumonia. To determine the genes regulated by LiaR that account for these defects, transcriptional profiling was performed using DNA microarray analysis, comparing wild-type GBS to LiaR mutant GBS under non-stressed conditions.
Project description:Background. Pneumococcus is a major human pathogen and the polysaccharide capsule is considered its main virulence factor. Nevertheless, strains lacking a capsule, named non-typeable pneumococcus (NT), are maintained in nature and frequently colonise the human nasopharynx. Interest in these strains, not targeted by any of the currently available pneumococcal vaccines, has been rising as they seem to play an important role in the evolution of the species. Currently, there is a paucity of data regarding this group of pneumococci. Also, questions have been raised on whether they are true pneumococci. We aimed to obtain insights in the genetic content of NT and the mechanisms leading to non-typeability and to genetic diversity. Methods. A collection of 52 NT isolates representative of the lineages circulating in Portugal between 1997 and 2007, as determined by pulsed-field gel electrophoresis and multilocus sequence typing, was analysed. The capsular region was sequenced and comparative genomic hybridisation (CGH) using a microarray covering the genome of 10 pneumococcal strains was carried out. The presence of mobile elements was investigated as source of intraclonal variation. Results. NT circulating in Portugal were found to have similar capsular regions, of cps type NCC2, i.e., having aliB-like ORF1 and aliB-like ORF2 genes. The core genome of NT was essentially similar to that of encapsulated strains. Also, competence genes and most virulence genes were present. The few virulence genes absent in all NT were the capsular genes, type-I and type-II pili, choline-binding protein A (cbpA/pspC), and pneumococcal surface protein A (pspA). Intraclonal variation could not be entirely explained by the presence of prophages and other mobile elements. Conclusions. NT circulating in Portugal are a homogeneous group belonging to cps type NCC2. Our observations support the theory that they are bona-fide pneumococcal isolates that do not express the capsule but are otherwise essentially similar to encapsulated pneumococci. Thus we propose that NT should be routinely identified and reported in surveillance studies.
Project description:Streptococcus suis is an emerging zoonotic agent causing meningitis and septicemia. Outbreaks in humans in China with atypical cases of streptococcal toxic shock-like syndrome have been described to be caused by a clonal epidemic S. suis strain characterized as sequence type (ST) 7 by multilocus sequence typing, different from the classical ST1 usually isolated in Europe. Previous in vitro studies showed that Toll-like receptor (TLR) 2 plays a major role in S. suis ST1 interactions with host cells. In the present study, the in vivo role of TLR2 in systemic infections caused by S. suis ST1 or ST7 strains using TLR2 deficient (TLR2-/-) mice was evaluated. TLR2-mediated recognition significantly contributes to the acute disease caused by the highly virulent S. suis ST1 strain, since the TLR2-/- mice remained unaffected when compared to wild type (WT) mice. The lack of mortality could not be associated with a lower bacterial burden; however, a significant decrease in the induction of pro-inflammatory mediators, as evaluated by microarray, real-time PCR and protein assays, was observed. On the other hand, TLR2-/- mice infected with the epidemic ST7 strain presented no significant differences regarding survival and expression of pro-inflammatory mediators when compared to the WT mice. Together, these results show a TLR2-independent host innate immune response to S. suis that depends on the strain.
Project description:Streptococcus suis is an emerging zoonotic agent causing meningitis and septicemia. Outbreaks in humans in China with atypical cases of streptococcal toxic shock-like syndrome have been described to be caused by a clonal epidemic S. suis strain characterized as sequence type (ST) 7 by multilocus sequence typing, different from the classical ST1 usually isolated in Europe. Previous in vitro studies showed that Toll-like receptor (TLR) 2 plays a major role in S. suis ST1 interactions with host cells. In the present study, the in vivo role of TLR2 in systemic infections caused by S. suis ST1 or ST7 strains using TLR2 deficient (TLR2-/-) mice was evaluated. TLR2-mediated recognition significantly contributes to the acute disease caused by the highly virulent S. suis ST1 strain, since the TLR2-/- mice remained unaffected when compared to wild type (WT) mice. The lack of mortality could not be associated with a lower bacterial burden; however, a significant decrease in the induction of pro-inflammatory mediators, as evaluated by microarray, real-time PCR and protein assays, was observed. On the other hand, TLR2-/- mice infected with the epidemic ST7 strain presented no significant differences regarding survival and expression of pro-inflammatory mediators when compared to the WT mice. Together, these results show a TLR2-independent host innate immune response to S. suis that depends on the strain.
Project description:Identification of Genes and Genomic Islands Correlated with High Pathogenicity through Tilling Microarray-Based Comparative Genomics in S. suis. Streptococcus suis is an important zoonotic pathogen that can cause meningitis and sepsis in both pigs and humans. S. suis isolates have been categorized into groups of different levels of pathogenicity, with sequence type (ST) ST1 clonal complex strains having a higher degree of virulence than other STs. However, the genetic basis of the differences in pathogenicity is still poorly understood. In this study, a comprehensive genomic comparison of 31 S. suis strains from different clinical sources with the genome sequence of the high pathogenicity (HP) strain GZ1 was conducted using NimbleGenM-bM-^@M-^Ys tilling microarray platform. Comparative genomic analysis on the 31 S. suis strains of different serotypes and ST types through tilling arrays.