Project description:We used transposon insertion sequencing (Tn-Seq) to identify the genes that are required for in vitro growth and intramacrophage growth of the live vaccine strain of F. tularensis (LVS).
Project description:The goal of this study is to determine the host response of human epithelial cells during infection with Francisella Tularensis. For this purpose, A549 human epithelial cell line was infected with Francisella tularensis spp. holarctica strain LVS for different times of infection, in duplicates. At different times post infection (0.5/1/3/6/12/24 hours post infection) cells were harvested and total RNA was extracted. RNA-seq libraries were constructed and sequencing of 100bp paired-end was performed on the Illumina NovaSeq 6000 system. Sequencing yielded about 22M reads per sample that were mapped to the human genome (Human: GRCh38) resulting with the identification of 21,066 transcripts. The expression of the infected samples was compared to mock sample, and RNA ratios were clustered using partitioning clustering. This approach allowed clustering of the cellular transcripts into 5 distinct classes based on similarities in temporal expression profiles. We next carried out GO term enrichment analysis for each of these five cluster. Our study represents the first detailed analysis of human epithelial response to Francisella tularensis infection, and provide a framework for comparative investigations of genes and mechanisms that may contribute to the infection.
Project description:Bacteremia caused by Francisella tularensis is rare and has been reported mainly in the United States and infrequently in Europe. We report herein the first case of bacteremic F. tularensis pneumonia in an immunocompetent individual in southern Europe.
Project description:Comparison of enriched membrane fractions of Francisella tularensis subsp. holarctica strain FSC200 and its DsbA mutant by SILAC analysis.
Project description:We used whole-genome analysis and subsequent characterization of geographically diverse strains using new genetic signatures to identify distinct subgroups within Francisella tularensis subsp. tularensis group A.I: A.I.3, A.I.8, and A.I.12. These subgroups exhibit complex phylogeographic patterns within North America. The widest distribution was observed for A.I.12, which suggests an adaptive advantage.