Project description:UnlabelledGibbon ape leukemia viruses (GALVs) are part of a larger group of pathogenic gammaretroviruses present across phylogenetically diverse host species of Australasian mammals. Despite the biomedical utility of GALVs as viral vectors and in cancer gene therapy, full genome sequences have not been determined for all of the five identified GALV strains, nor has a comprehensive evolutionary analysis been performed. We therefore generated complete genomic sequences for each GALV strain using hybridization capture and high-throughput sequencing. The four strains of GALV isolated from gibbons formed a monophyletic clade that was closely related to the woolly monkey virus (WMV), which is a GALV strain that likely originated in a gibbon host. The GALV-WMV clade in turn formed a sister group to the koala retroviruses (KoRVs). Genomic signatures of episodic diversifying selection were detected among the gammaretroviruses with concentration in the env gene across the GALV strains that were particularly oncogenic and KoRV strains that were potentially exogenous, likely reflecting their adaptation to the host immune system. In vitro studies involving vectors chimeric between GALV and KoRV-B established that variable regions A and B of the surface unit of the envelope determine which receptor is used by a viral strain to enter host cells.ImportanceThe gibbon ape leukemia viruses (GALVs) are among the most medically relevant retroviruses due to their use as viral vectors for gene transfer and in cancer gene therapy. Despite their importance, full genome sequences have not been determined for the majority of primate isolates, nor has comprehensive evolutionary analysis been performed, despite evidence that the viruses are facing complex selective pressures associated with cross-species transmission. Using hybridization capture and high-throughput sequencing, we report here the full genome sequences of all the GALV strains and demonstrate that diversifying selection is acting on them, particularly in the envelope gene in functionally important domains, suggesting that host immune pressure is shaping GALV evolution.
Project description:UnlabelledGibbon ape leukemia virus (GALV) and koala retrovirus (KoRV) most likely originated from a cross-species transmission of an ancestral retrovirus into koalas and gibbons via one or more intermediate as-yet-unknown hosts. A virus highly similar to GALV has been identified in an Australian native rodent (Melomys burtoni) after extensive screening of Australian wildlife. GALV-like viruses have also been discovered in several Southeast Asian species, although screening has not been extensive and viruses discovered to date are only distantly related to GALV. We therefore screened 26 Southeast Asian rodent species for KoRV- and GALV-like sequences, using hybridization capture and high-throughput sequencing, in the attempt to identify potential GALV and KoRV hosts. Only the individuals belonging to a newly discovered subspecies of Melomys burtoni from Indonesia were positive, yielding an endogenous provirus very closely related to a strain of GALV. The sequence of the critical receptor domain for GALV infection in the Indonesian M. burtoni subsp. was consistent with the susceptibility of the species to GALV infection. The second record of a GALV in M. burtoni provides further evidence that M. burtoni, and potentially other lineages within the widespread subfamily Murinae, may play a role in the spread of GALV-like viruses. The discovery of a GALV in the most western part of the Australo-Papuan distribution of M. burtoni, specifically in a transitional zone between Asia and Australia (Wallacea), may be relevant to the cross-species transmission to gibbons in Southeast Asia and broadens the known distribution of GALVs in wild rodents.ImportanceGibbon ape leukemia virus (GALV) and the koala retrovirus (KoRV) are very closely related, yet their hosts neither are closely related nor overlap geographically. Direct cross-species infection between koalas and gibbons is unlikely. Therefore, GALV and KoRV may have arisen via a cross-species transfer from an intermediate host whose range overlaps those of both gibbons and koalas. Using hybridization capture and high-throughput sequencing, we have screened a wide range of rodent candidate hosts from Southeast Asia for KoRV- and GALV-like sequences. Only a Melomys burtoni subspecies from Wallacea (Indonesia) was positive for GALV. We report the genome sequence of this newly identified GALV, the critical domain for infection of its potential cellular receptor, and its phylogenetic relationships with the other previously characterized GALVs. We hypothesize that Melomys burtoni, and potentially related lineages with an Australo-Papuan distribution, may have played a key role in cross-species transmission to other taxa.
Project description:HIV-1 efficiently forms pseudotyped particles with many gammaretrovirus glycoproteins, such as Friend murine leukemia virus (F-MLV) Env, but not with the related gibbon ape leukemia virus (GaLV) Env or with a chimeric F-MLV Env with a GaLV cytoplasmic tail domain (CTD). This incompatibility is modulated by the HIV-1 accessory protein Vpu. Because the GaLV Env CTD does not resemble tetherin or CD4, the well-studied targets of Vpu, we sought to characterize the modular sequence in the GaLV Env CTD required for this restriction in the presence of Vpu. Using a systematic mutagenesis scan, we determined that the motif that makes GaLV Env sensitive to Vpu is INxxIxxVKxxVxRxK. This region in the CTD of GaLV Env is predicted to form a helix. Mutations in the CTD that would break this helix abolish sensitivity to Vpu. Although many of these positions can be replaced with amino acids with similar biophysical properties without disrupting the Vpu sensitivity, the final lysine residue is required. This Vpu sensitivity sequence appears to be modular, as the unrelated Rous sarcoma virus (RSV) Env can be made Vpu sensitive by replacing its CTD with the GaLV Env CTD. In addition, F-MLV Env can be made Vpu sensitive by mutating two amino acids in its cytoplasmic tail to make it resemble more closely the Vpu sensitivity motif. Surprisingly, the core components of this Vpu sensitivity sequence are also present in the host surface protein CD4, which is also targeted by Vpu through its CTD.
Project description:Glvr1 encodes the human receptor for gibbon ape leukemia virus (GALV) and feline leukemia virus subgroup B (FeLV-B), while the related gene Glvr2 encodes the human receptor for amphotropic murine leukemia viruses (A-MLVs). The two proteins are 62% identical in their amino acid sequences and are predicted to have 10 transmembrane domains and five extracellular loops. A stretch of nine amino acids (region A) in the predicted fourth extracellular loop was previously shown to be critical for the function of Glvr1 as receptor for GALV and FeLV-B. Glvr1 and -2 show clusters of amino acid differences in several of their predicted extracellular loops, with the highest degree of divergence in region A. Chimeras were made between the two genes to further investigate the role of Glvr1 region A in defining receptor specificity for GALV and FeLV-B and to map which regions of Glvr2 control receptor specificity for A-MLVs. Region A from Glvr1 was sufficient to confer receptor specificity for GALV upon Glvr2, with the same chimera failing to act as a receptor for FeLV-B. However, introduction of additional N- or C-terminal Glvr1-encoding sequences in addition to Glvr1 region A-encoding sequences resulted in functional FeLV-B receptors. Therefore, FeLV-B is dependent on Glvr1 sequences outside region A for infectivity. The receptor specificity of Glvr2 for A-MLV could not be mapped to a single critical region; rather, N-terminal as well as C-terminal Glvr2-encoding sequences could confer specificity for A-MLV infection upon Glvr1. Surprisingly, though GALV/FeLV-B and A-MLV belong to different interference groups, some chimeras functioned as receptors for all three viruses.
Project description:Acute pulmonary embolism (APE) remains among the most formidable challenges facing public health practice in the 21st century. Accurate diagnosis of APE is severely hindered by the lack of biomarkers with both high sensitivity and specificity. MicroRNAs (miRNAs) involve various pathophysiologic processes underlying multitudinous diseases. Accmulating evidences point to the fact that miRNAs may serve as ideal biomarkers.The aim of the present study was to explore the potential of plasma miRNAs as biomarkers for diagnosis of APE.
Project description:We have sequenced the envelope genes from each of the five members of the gibbon ape leukemia virus (GALV) family of type C retroviruses. Four of the GALVs, including GALV strain SEATO (GALV-S), were originally isolated from gibbon apes, whereas the fifth member of this family, simian sarcoma-associated virus (SSAV), was isolated from a woolly monkey and shares 78% amino acid identity with GALV-S. To determine whether these viruses have identical host ranges, we evaluated the susceptibility of several cell lines to either GALV-S or SSAV infection. GALV-S and SSAV have the same host range with the exception of Chinese hamster lung E36 cells, which are susceptible to GALV-S but not SSAV. We used retroviral vectors that differ only in their envelope composition (e.g., they contain either SSAV or GALV-S envelope protein) to show that the envelope of SSAV restricts entry into E36 cells. Although unable to infect E36 cells, SSAV infects GALV-resistant murine cells expressing the E36-derived viral receptor, HaPit2. These results suggest that the receptors present on E36 cells function for SSAV. We have constructed several vectors containing GALV-S/SSAV chimeric envelope proteins to map the region of the SSAV envelope that blocks infection of E36 cells. Vectors bearing chimeric envelopes comprised of the N-terminal region of the GALV-S SU protein and the C-terminal region of SSAV infect E36 cells, whereas vectors containing the N-terminal portion of the SSAV SU protein and C-terminal portion of GALV-S fail to infect E36 cells. This finding indicates that the region of the SSAV envelope protein responsible for restricting SSAV infection of E36 cells lies within its amino-terminal region.
Project description:A novel retrovirus, morphologically consistent with mammalian C-type retroviruses, was detected by electron microscopy in mitogen-stimulated peripheral blood mononuclear cell cultures from 163 koalas and in lymphoma tissue from 3 koalas. PCR amplified provirus from the blood and tissues of 17 wild and captive koalas, and reverse transcriptase-PCR demonstrated viral mRNA, viral genomic RNA, and reverse transcriptase activity in koala serum and cell culture supernatants. Comparison of viral sequences derived from genomic DNA and mRNA showed identity indicative of a single retroviral species-here designated koala retrovirus (KoRV). Southern blot analysis of koala tissue genomic DNA using labelled KoRV probes demonstrated banding consistent with an endogenous retrovirus. Complete and apparently truncated proviruses were detected in DNA of both clinically normal koalas and those with hematopoietic disease. KoRV-related viruses were not detected in other marsupials, and phylogenetic analysis showed that KoRV paradoxically clusters with gibbon ape leukemia virus (GALV). The strong similarity between GALV and KoRV suggests that these viruses are closely related and that recent cross-host transmission has occurred. The complete proviral DNA sequence of KoRV is reported.
Project description:Retrovirus infection is initiated by binding of the viral envelope glycoprotein to a cell-surface receptor. The envelope proteins of type C retroviruses of mammals demonstrate similarities in structural organization and protein sequence. These similarities suggest the possibility that retroviruses from different interference groups might use related proteins as receptors, despite the absence of any relationship between retrovirus receptors isolated to date. To investigate this possibility, we have identified a human cDNA clone encoding a protein closely related to the receptor for gibbon ape leukemia virus and have found that it functions as the receptor for the amphotropic group of murine retroviruses. Expression of this protein (GLVR-2) is likely to be a requirement for infection of human cells by amphotropic retroviral vectors for purposes of gene therapy.