Project description:Arbuscular mycorrhizal symbiosis is a predominant relationship between plant and arbuscular mycorrhizal fungi. To idendify arbuscular mycorrhiza responsive miRNAs, small RNA libraries were constructed in tomato roots colonized with Rhizophagus irregularis and without Rhizophagus irregularis. We identify miRNAs in tomato roots and provide a new profile of tomato miRNAs. And we found that some miRNAs were responsive to arbuscular mycorrhiza by comparing miRNAs in treatment with that in control. Examination of arbuscular mycorrhiza responsive miRNAs in tomato through high-throughput small RNA sequencing of roots with Rhizophagus irregularis and that without Rhizophagus irregularis
Project description:Arbuscular mycorrhizal symbiosis is a predominant relationship between plant and arbuscular mycorrhizal fungi. To idendify arbuscular mycorrhiza responsive miRNAs, small RNA libraries were constructed in tomato roots colonized with Rhizophagus irregularis and without Rhizophagus irregularis. We identify miRNAs in tomato roots and provide a new profile of tomato miRNAs. And we found that some miRNAs were responsive to arbuscular mycorrhiza by comparing miRNAs in treatment with that in control.
Project description:ngs2021_19_rhizophagus-responses of maize to the arbuscular fungus rhizophagus irregularis mitigate n deficiency stress-What is the impact of Rhizophagus irregularis on maize transcriptome under different N nutrition conditions, what is the impact of N on R. irregularis transcriptome in maize roots.-After 4 days of germination, maize seeds were sown in pots filled with sterile mix 1:1 clay beads:unfertilized peat. Inoculation performed in 3 times with Rhizohphagus irregularis spores purchased at Agronutrition. First inoculation perfomed with 500 spores/plant at sowing. Two other incoulations performed the following week and 2 weeks later with 100 spore per plant each.
Project description:RKNs are economically most damaging, obligate sedentary endoparasites that form giant cells within host roots to obtain nutrition and complete their life cycle. We report genome-wide identification of miRNAs from both host and RKN using RKN-infected susceptible tomato roots through high-throughput sequencing. Eleven small RNA libraries were made from five disease development stages, their five corresponding uninfected development stages and uninfected development stage 0. A total of 52 conserved miRNAs, 4 variants of conserved miRNAs and 281 novel miRNAs of host were identified. A significantly upregulated expression of majority of the miRNAs was observed during susceptible response and downregulated expression during resistance response through qRT-PCR. The miRNA targets were predicted and validated through 5’RLM-RACE. Furthermore, correlation between the expression profile of selected conserved miRNAs viz., miR164, miR156, miR396, miR159, and novel Sly_miRNA996 with their target transcription factors viz., NAC, SBP, GRF1, GAMYB-like, and MYB-like, respectively was also determined. This study suggests a potential role of host miRNAs in regulating transcription factor genes involved in plant developmental processes and defense responses during RKN infection. Additionally, 328 RKN miRNAs including 38 conserved miRNAs, 106 novel miRNAs, and 184 candidate novel miRNAs were identified from same dataset. The differential expression of conserved and RKN-specific miRNAs at different development stages of nematode in tomato roots suggests their probable role during nematode development and adaptation to parasitic behavior. This is the most comprehensive study reporting the identification and characterization of miRNAs from both tomato and RKN in five different disease development stages under soil grown conditions and their potential roles during RKN infection in tomato roots.
Project description:Comparison of the endogenous small RNA content of tomato leaves and fruits. Size fractionated small RNA from total RNA extracts was ligated to adapters, purified again and reverse transcribed. After PCR amplification the sample was subjected to 454 high throughput pyrosequencing. Please see www.454.com for details of the sequencing technology. Note: Raw data files were not available from 454 at the time this experiment was carried out.
Project description:RNA sequencing in tomato for detect mRNA expression of Solanum lycopersicum flower.The two cultivars (monomaker, raceme) had three different flowering stages (budlet, Flower bud, Full bloom) for transcriptome sequencing
Project description:RNA sequencing in tomato for detect mRNA expression of Solanum lycopersicum Axillary bud.The two cultivars (monomaker, raceme) at Axillary bud for transcriptome sequencing