Project description:The study of the mechanisms leading to cardiac hypertrophy is essential to better understand cardiac development and regeneration. Pathological conditions such as ischemia or pressure overload can induce a release of extracellular nucleotides within the heart. We recently investigated the potential role of nucleotide P2Y receptors in cardiac development. We showed that adult P2Y4-null mice displayed microcardia resulting from defective cardiac angiogenesis. Here we show that loss of another P2Y subtype called P2Y6, a UDP receptor, was associated with a macrocardia phenotype and amplified pathological cardiac hypertrophy. Cardiomyocyte proliferation and size were increased in vivo in hearts of P2Y6-null neonates, resulting in enhanced post-natal heart growth. We then observed that loss of P2Y6 receptor enhanced pathological cardiac hypertrophy induced after isoproterenol injection. We identified an inhibitory effect of UDP on in vitro isoproterenol-induced cardiomyocyte hyperplasia and hypertrophy. The present study identifies mouse P2Y6 receptor as a regulator of cardiac development and cardiomyocyte function. P2Y6 receptor could constitute a therapeutic target to regulate cardiac hypertrophy.
Project description:The heart grows in response to pathological and physiological stimuli, while the former often precedes cardiomyocyte loss and heart failure, the latter paradoxically protects the heart and enhances cardiomyogenesis. Long noncoding RNAs (lncRNAs) are important in cardiac development and disease, less is known about their roles in physiological hypertrophy or cardiomyogenesis. The purpose of this study was to compare transcriptome profilings in exercise-induced physiological cardiac growth and stress-induced pathological cardiac growth. We identified a set of lncRNAs called long noncoding exercise associated cardiac transcripts (lncExACT). One of them, lncExACT1, whose cardiac expression was downregulated after exercise but upregulated after transverse aortic constriction. Inhibition of lncExACT1 induced physiolgoical cardiac growth while overexpression of lncExACT1 induced pathological hypertrophy and heart failure.
Project description:Purpose: The physiological cardiac hypertrophy is an adaptive condition that does not associate with myocyte cell death while pathological hypertrophy is a maladaptive condition associated with myocyte cell death. Alpha-2 macroglobulin (α-2M) an acute phase protein induces cardiac hypertrophy via the ERK1,2 and PI3K/Akt signaling. This study is aimed at exploring the miRNome of α-2M induced hypertrophied cardiomyocytes and to understand the role of miRNAs in determination of pathological and physiological hypertrophy. Methods: Hypertrophy was induced in H9c2 cardiomyoblasts using alpha-2 macroglobulin. The induction of hypertrophy is confirmed by microscopy and gene expression studies. Subsequently, the total RNA was isolated and small RNA sequencing was executed in Illumina HiSeq 2000. Results: Analysis of small RNA reads revealed the differential expression of a large set of miRNAs during hypertrophy. Among the differentially expressed candidates, miR-99 family (miR-99a, miR-99b and miR-100) showed significant downregulation upon α-2M treatment while isoproterenol treatment (pathological hypertrophy) upregulated their expression. The binding site for Egr1 transcription factor was identified in the promoter region of miR-99 family, and interestingly all miRNAs with Egr1 binding site proven by ChIP-Seq were downregulated during physiological hypertrophy Conclusions: The results proved Egr-1 mediated regulation of miR-99 family determines the uniqueness of pathological and physiological hypertrophy. Upregulated miR-99 expression during pathological hypertrophy suggests that it can be a valuable diagnostic marker and potential therapeutic target for cardiac hypertrophy and heart failure. Small RNA profiles of control and hypertrophied cardiomyocyte H9c2 cells were generated by deep sequencing using Illumina HiSeq 2000
Project description:Cardiac hypertrophy consists in the enlargement of cardiomyocytes and alteration of the extracellular matrix organization in response to physiological or pathological stress. In pathological hypertrophy ocuurs myocardial damage, loss of cardiomyocytes, fibrosis, inflammation, sarcomere disorganization and metabolic impairment, leading to cardiac dysfunction.The rodent model treated with isoproterenol induces cardiac hypertrophy due the constant activation of β-adrenergic receptors. We conducted a quantitative label-free proteomic analysis of cardiomyocytes isolated from hearts of mice treated or not with isoproterenol to better understand the molecular bases of cellular response due to isoproterenol-induced injury.
Project description:We performed microarray analyses on RNA from mice with isoproterenol-induced cardiac hypertrophy and mice with exercise-induced physiological hypertrophy and identified 865 and 2,534 genes that were significantly altered in pathological and physiological cardiac hypertrophy models, respectively.
Project description:The heart adapts to increased workload through hypertrophic growth of cardiomyocytes. Although beneficial when induced physiologically by exercise, pathological cues including hypertension cause reexpression of fetal genes and dysfunctional hypertrophy, with lasting consequences for cardiac health. We hypothesised that these differences are driven by changes in chromatin-encoded cellular memory. We generated genome-wide maps of transcription and of two stable epigenetic marks, H3K9me2 and H3K27me3, specifically in hypertrophied cardiomyocytes, by selectively flow-sorting their nuclei. This demonstrated a pervasive loss of euchromatic H3K9me2 specifically upon pathological but not physiological hypertrophy, derepressing genes associated with pathological hypertrophy. Levels of the H3K9 methyltransferases, G9a and GLP, were correspondingly reduced. Importantly, pharmacological or genetic inactivation of these enzymes was sufficient to induce pathological hypertrophy and the dedifferentiation associated with it. These findings suggest novel therapeutic opportunities by defining an epigenetic state of cardiomyocytes, acquired during maturation, which is required for maintaining cardiac health.
Project description:Purpose: The physiological cardiac hypertrophy is an adaptive condition that does not associate with myocyte cell death while pathological hypertrophy is a maladaptive condition associated with myocyte cell death. Alpha-2 macroglobulin (α-2M) an acute phase protein induces cardiac hypertrophy via the ERK1,2 and PI3K/Akt signaling. This study is aimed at exploring the miRNome of α-2M induced hypertrophied cardiomyocytes and to understand the role of miRNAs in determination of pathological and physiological hypertrophy. Methods: Hypertrophy was induced in H9c2 cardiomyoblasts using alpha-2 macroglobulin. The induction of hypertrophy is confirmed by microscopy and gene expression studies. Subsequently, the total RNA was isolated and small RNA sequencing was executed in Illumina HiSeq 2000. Results: Analysis of small RNA reads revealed the differential expression of a large set of miRNAs during hypertrophy. Among the differentially expressed candidates, miR-99 family (miR-99a, miR-99b and miR-100) showed significant downregulation upon α-2M treatment while isoproterenol treatment (pathological hypertrophy) upregulated their expression. The binding site for Egr1 transcription factor was identified in the promoter region of miR-99 family, and interestingly all miRNAs with Egr1 binding site proven by ChIP-Seq were downregulated during physiological hypertrophy Conclusions: The results proved Egr-1 mediated regulation of miR-99 family determines the uniqueness of pathological and physiological hypertrophy. Upregulated miR-99 expression during pathological hypertrophy suggests that it can be a valuable diagnostic marker and potential therapeutic target for cardiac hypertrophy and heart failure.
Project description:Purpose: Different studies revealed the importance of microRNAs (miRNAs) in pathological hypertrophy but their role during physiological hypertrophy is largely unexplored. Hence, this study is aimed at revealing the global expression profile of miRNAs during physiological cardiac hypertrophy. Methods: Chronic swimming protocol continuously for eight weeks resulted in induction of physiological hypertrophy in rats and histopathology revealed the absence of tissue damage, apoptosis or fibrosis. Subsequently, the total RNA was isolated and small RNA sequencing was executed in Illumina HiSeq 2000. Results: Analysis of small RNA reads revealed the differential expression of a large set of miRNAs during physiological hypertrophy. The expression profile of the significantly differentially expressed miRNAs were validated by qPCR. Conclusions: This is the first report to reveal the involvement of a large number of apoptotic miRNAs during physiological cardiac hypertrophy including the previously unknown cardiac players like miR-99, miR-100, miR-191, miR-181 and miR-19. Our data indicates that regulation of these apoptotic miRNAs can be one of the major key factor in determining pathological or physiological hypertrophy by controlling apoptosis, fibrosis and cell death mechanisms. Heart small RNA profiles of 16-week old control and physiologically hypertrophied wistar rat were generated by deep sequencing using Illumina HiSeq 2000