Project description:We report that decreased expression and activity of AhR exacerbates murine neovascular age-related macular degeneration, and increases cell migration and tube formation. The mechanism involves increased expression of pro-angiogenic mediators and altered matrix degradation. The results of our study suggest that the AhR signaling pathway may be important in multiple AMD related pathways. Gene expression analysis in the retinal pigment epithelium (RPE)-choroid tissue from AhR knockout mice contrasted against wild-type age-matched controls.
Project description:Mononuclear phagocytes (MPs), including monocytes and macrophages, play complex roles in the pathogenesis of age-related macular degeneration (AMD). We aimed to perform global transcriptome analysis on monocytes from AMD patients to obtain additional insight to the role of MPs in AMD. Peripheral blood was taken from treatment-naïve neovascular AMD (nvAMD) patients (n=14), and age-matched controls (n=15). Peripheral blood mononuclear cells (PBMCs) were separated and monocytes were isolated via negative selection. Gene expression was evaluated with Affymetrix Gene1.0 ST microarrays. Statistical/bioinformatics analysis was performed using open sourceware programs.
Project description:We assessed the feasibility of transplanting a sheet of retinal pigment epithelial (RPE) cells differentiated from induced pluripotent stem cells (iPSCs) in a patient with neovascular age-related macular degeneration. The iPSCs were generated from skin fibroblasts obtained from two patients with advanced neovascular age-related macular degeneration and were differentiated into RPE cells. The RPE cells and the iPSCs from which they were derived were subject to extensive testing. A surgery that included the removal of the neovascular membrane and transplantation of the autologous iPSC-derived RPE cell sheet under the retina was performed in one of the patients.
Project description:Illumina Infinium HumanMethylation450 BeadChip data from genomic DNA of retinal pigment epithelium from Age-related Macular Degeneration patients or age-matched controls.
Project description:We assessed the feasibility of transplanting a sheet of retinal pigment epithelial (RPE) cells differentiated from induced pluripotent stem cells (iPSCs) in a patient with neovascular age-related macular degeneration. The iPSCs were generated from skin fibroblasts obtained from two patients with advanced neovascular age-related macular degeneration and were differentiated into RPE cells. The RPE cells and the iPSCs from which they were derived were subject to extensive testing. A surgery that included the removal of the neovascular membrane and transplantation of the autologous iPSC-derived RPE cell sheet under the retina was performed in one of the patients. At 1 year after surgery, the transplanted sheet remained intact, best corrected visual acuity had not improved or worsened, and cystoid macular edema was present.
Project description:Macular subretinal fibrosis is the end-stage complication of neovascular age-related macular degeneration (nAMD). RPE/Choroid from control and subretinal fibrosis mice were collected and processed for RNA sequencing (RNA-seq) analysis to investigate the molecular mechanism of subretinal fibrosis.
Project description:We report that decreased expression and activity of AhR exacerbates murine neovascular age-related macular degeneration, and increases cell migration and tube formation. The mechanism involves increased expression of pro-angiogenic mediators and altered matrix degradation. The results of our study suggest that the AhR signaling pathway may be important in multiple AMD related pathways.
Project description:Although genome-wide association studies, animal models, and cell culture systems have yielded important insights into the pathogenesis of neovascular age-related macular degeneration (nAMD), the underlying molecular pathways remain ill defined. Recent studies have deciphered the transcriptional profile of choroidal neovascularisation (CNV) of body donor eyes and were thus limited by the time span from death to preservation and the associated rapid 5'-RNA degradation. In this study, CNVs were therefore formalin-fixed immediately after surgical extraction from patients with nAMD and analyzed using a 3’ RNA sequencing approach called Massive Analysis of cDNA Ends (MACE). Age-matched formalin-fixed paraffin-embedded (FFPE) RPE-choroidal specimens obtained from the macular region of enucleated eyes with ciliary body melanoma served as controls. Transcriptome profiles were generated and disease-associated gene signatures were identified using statistical and bioinformatic methods. Calprotectin (S100A8/A9) protein expression was investigated by immunohistochemistry and ELISA.We identified 158 differentially-expressed genes (DEG) that were significantly increased in CNV compared to control tissue. Gene ontology enrichment analysis demonstrated that these DEG contributed to biological processes, such as Blood Vessel Development, Extracellular Structure Organization, Response to Wounding and several immune-related terms. The S100 calcium-binding protein A8 (S100A8) and S100A9 emerged among the top DEG, as confirmed by immunohistochemistry on CNV tissue and protein analysis of vitreous samples from nAMD patients and controls. This study provides a high-resolution RNA-sequencing-based transcriptional signature of choroidal neovascular membranes in AMD patients and reveals S100A8/A9 as a novel biomarker and promising target for AMD-directed therapeutics and diagnostics.
Project description:We profiled using single cell RNA sequencing the peripheral blood mononuclear cells from control patients and patients with age-related macular degeneration (AMD).