Project description:Mucopolysaccharidosis VII (MPS VII) is due to mutations within the gene encoding the lysosomal enzyme beta-glucuronidase, and results in the accumulation of glycosaminoglycans. MPS VII causes aortic dilatation and elastin fragmentation. In this study we performed microarray analysis of ascending aortas from normal and MPS VII mice, trying to find out possible genes responsible for the phenotype observed. In addition, during our breeding strategy, we noticed that some MPS VII mice had less dilated aortas, and we proposed that an yet-unidentified gene could be responsible for the difference observed. We therefore included in the analysis two MPS VII mice with aortas that were not dilated. Total RNA extracted from ascending aortas from 3 Normal mice, 3 MPS VII mice with dilated aortas and 2 MPS VII mice with aortas that were not dilated.
Project description:We used microarray to detect pathway differences in the various brain regions in a monogenic in mucopolysaccharidosis type VII ( MPS VII ), a mouse model of a lysosomal storage disease A number of changes revealed unexpected system and process alterations, such as upregulation of the immune system with few inflammatory changes (a significant difference from the closely related MPS IIIb model), down-regulation of major oligodendrocyte genes even though white matter changes are not a feature histopathologically, and a plethora of developmental gene changes. 94 samples, no replicates, made up of half normals and half MPS mutant mice for the MPS VII mutation backcrossed on a C3h-heouj background
Project description:Mucopolysaccharidosis VII (MPS VII) is due to mutations within the gene encoding the lysosomal enzyme beta-glucuronidase, and results in the accumulation of glycosaminoglycans. MPS VII causes aortic dilatation and elastin fragmentation. In this study we performed microarray analysis of ascending aortas from normal and MPS VII mice, trying to find out possible genes responsible for the phenotype observed. In addition, during our breeding strategy, we noticed that some MPS VII mice had less dilated aortas, and we proposed that an yet-unidentified gene could be responsible for the difference observed. We therefore included in the analysis two MPS VII mice with aortas that were not dilated.
Project description:We used microarray to detect pathway differences in the hippocampus in mucopolysaccharidosis type VII ( MPS VII ), a mouse model of a lysosomal storage disease Pathway changes were similar to those found in different strain where MPS VII mutation was backcrossed on a C3h-heouj background and implicated immune, vesicle and other pathways
Project description:PURPOSE: To provide a detailed gene expression profile of the normal postnatal mouse cornea. METHODS: Serial analysis of gene expression (SAGE) was performed on postnatal day (PN)9 and adult mouse (6 week) total corneas. The expression of selected genes was analyzed by in situ hybridization. RESULTS: A total of 64,272 PN9 and 62,206 adult tags were sequenced. Mouse corneal transcriptomes are composed of at least 19,544 and 18,509 unique mRNAs, respectively. One third of the unique tags were expressed at both stages, whereas a third was identified exclusively in PN9 or adult corneas. Three hundred thirty-four PN9 and 339 adult tags were enriched more than fivefold over other published nonocular libraries. Abundant transcripts were associated with metabolic functions, redox activities, and barrier integrity. Three members of the Ly-6/uPAR family whose functions are unknown in the cornea constitute more than 1% of the total mRNA. Aquaporin 5, epithelial membrane protein and glutathione-S-transferase (GST) omega-1, and GST alpha-4 mRNAs were preferentially expressed in distinct corneal epithelial layers, providing new markers for stratification. More than 200 tags were differentially expressed, of which 25 mediate transcription. CONCLUSIONS: In addition to providing a detailed profile of expressed genes in the PN9 and mature mouse cornea, the present SAGE data demonstrate dynamic changes in gene expression after eye opening and provide new probes for exploring corneal epithelial cell stratification, development, and function and for exploring the intricate relationship between programmed and environmentally induced gene expression in the cornea. Keywords: other
Project description:Introgressed variants from other species can be an important source of genetic variation because they may arise rapidly, can include multiple mutations on a single haplotype, and have often been pretested by selection in the species of origin. Although introgressed alleles are generally deleterious, several studies have reported introgression as the source of adaptive alleles-including the rodenticide-resistant variant of Vkorc1 that introgressed from Mus spretus into European populations of Mus musculus domesticus. Here, we conducted bidirectional genome scans to characterize introgressed regions into one wild population of M. spretus from Spain and three wild populations of M. m. domesticus from France, Germany, and Iran. Despite the fact that these species show considerable intrinsic postzygotic reproductive isolation, introgression was observed in all individuals, including in the M. musculus reference genome (GRCm38). Mus spretus individuals had a greater proportion of introgression compared with M. m. domesticus, and within M. m. domesticus, the proportion of introgression decreased with geographic distance from the area of sympatry. Introgression was observed on all autosomes for both species, but not on the X-chromosome in M. m. domesticus, consistent with known X-linked hybrid sterility and inviability genes that have been mapped to the M. spretus X-chromosome. Tract lengths were generally short with a few outliers of up to 2.7 Mb. Interestingly, the longest introgressed tracts were in olfactory receptor regions, and introgressed tracts were significantly enriched for olfactory receptor genes in both species, suggesting that introgression may be a source of functional novelty even between species with high barriers to gene flow.
Project description:We used microarray to detect pathway differences in the various brain regions in a monogenic in mucopolysaccharidosis type VII ( MPS VII ), a mouse model of a lysosomal storage disease A number of changes revealed unexpected system and process alterations, such as upregulation of the immune system with few inflammatory changes (a significant difference from the closely related MPS IIIb model), down-regulation of major oligodendrocyte genes even though white matter changes are not a feature histopathologically, and a plethora of developmental gene changes.
Project description:Mucopolysaccharidosis (MPS) VII is a lysosomal storage disorder characterized by deficient activity of β-glucuronidase, leading to progressive accumulation of incompletely degraded heparan, dermatan and chondroitin sulfate glycosaminoglycans (GAGs). Patients with MPS VII exhibit progressive skeletal deformity including kyphoscoliosis and joint dysplasia, which decrease quality of life and increase mortality. Previously, using the naturally-occurring canine model, we demonstrated that one of the earliest skeletal abnormalities to manifest in MPS VII is failed initiation of secondary ossification in vertebrae and long bones at the requisite postnatal developmental stage. The objective of this study was to obtain global insights into the molecular mechanisms underlying this failed initiation of secondary ossification using whole transcriptome sequencing (RNA-Seq). Epiphyseal tissue was isolated from the vertebrae of control and MPS VII affected dogs at 9 and 14 days-of-age (n=5 for each group). Differences in global gene expression across this developmental window for both cohorts were established using RNA-Seq. A targeted analysis focused on signaling pathways important in the regulation of endochondral ossification, and a subset of gene expression changes were validated using qPCR. Principal Component Analysis revealed clustering of samples from each group, indicating clear effects of both age and disease state. At 9 days-of-age, 1375 genes were significantly differentially expression between MPS VII and control, and by 14 days-of-age, this increased to 4719 genes. Osteoactivin (GPNMB) was the top upregulated gene in MPS VII at both ages. Targeted analysis revealed temporal changes in gene expression from 9 to 14 days-of-age in control samples consistent with chondrocyte maturation, cartilage resorption, and osteogenesis. In MPS VII samples, however, elements of key osteogenic pathways such as Wnt/β-catenin and BMP signaling were dysregulated. In conclusion, this study represents the first step towards identifying druggable therapeutic targets and putative biomarkers for bone disease in MPS VII patients during postnatal growth.