Project description:The major environmental determinants of honeybee caste development come from larval nutrients: royal jelly stimulates the differentiation of larvae into queens, whereas beebread leads to worker bee fate. However, these determinants are not fully characterized. Here we report that plant RNAs, particularly miRNAs, which are more enriched in beebread than in royal jelly, delay development and decrease body and ovary size in honeybees, thereby preventing larval differentiation into queens and inducing development into worker bees. Mechanistic studies reveal that amTOR, a stimulatory gene in caste differentiation, is the direct target of miR162a. Interestingly, the same effect also exists in non-social Drosophila. When such plant RNAs and miRNAs are fed to Drosophila larvae, they cause extended developmental times and reductions in body weight and length, ovary size and fecundity. This study identifies an uncharacterized function of plant miRNAs that fine-tunes honeybee caste development, offering hints for understanding cross-kingdom interaction and coevolution.
Project description:Epigenetic modifications are known to profoundly affect the development and behavior of social insects. In the well-known caste differentiation process of honeybee (Apis mellifera), female larvae with identical genomes are fed royal jellydifferently and develop into either normal workers or into very large, long-lived, and extremely fecund queens, and the queen-worker asymmetry of honeybee is known to be result largely to differential genomic imprinting during larval development that involves DNA methylation-based regulation. The discovery of reversible N6-methyladenosine (m6A) RNA methylation modification has defined a new era for RNA-metabolism-related genetic regulation, yet much remains unknown about m6A-mediated post-transcriptional regulatory mechanisms. Here, we report the first honeybee RNA m6A methylome. Specifically, we used the m6A-seq technique to examine the RNA m6A methylomes of honeybee larvae, including queen and worker larvae at multiple instar stages. We identified multiple conserved features of m6A methylation machinery and transcriptome-wide m6A distribution trends among insect species, and observed that m6A marks exert functions in regulating caste differentiation, with apparently particularly strong functional impacts on fifth instar worker larvae. Functional annotation of differentially methylated candidate caste-differentiation-related transcripts revealed many known regulators of caste differentiation (e.g. ILP-2, p110, PI3K, and JHAMT etc.) as well as the widely-studied Vitellogenin gene, which has not previously been implicated in caste differentiation. As ever-more regulatory roles for m6A marks are discovered, honeybees may become an excellent model studying the biology of such epi-transcriptomic regulatory systems, from embryonic development through holometabolous caste-specific development and on towards behavior and the emergent social hierarchies underlying eusociality in animals.
Project description:The honeybee (Apis mellifera) is a well-known eusocial insect. In honeybee colonies, thousands of sterile workers, including nurse and forager bees, perform various tasks within or outside the hive, respectively. The queen is the only fertile female and is responsible for reproduction. The queen and workers share similar genomes, but occupy different caste statuses. We established single-cell transcriptomic atlases of brains from queens and worker subcastes, and identified five major cell groups: Kenyon, optic lobe, olfactory projection, glial, and hemocyte cells. By dividing Kenyon and glial cells into multiple subtypes based on credible markers, we observed that vitellogenin (vg) was highly expressed in specific glial-cell subtypes in brains of queens. Knockdown of vg at the early larval stage significantly suppressed the development into adult queens. We demonstrate vg expression as a "molecular signature" for the queen caste, and suggest involvement of vg in regulating caste differentiation.
Project description:The major environmental determinants of honeybee caste development come from larval nutrients: royal jelly stimulates the differentiation of larvae into queens, whereas beebread leads to worker bee fate. However, these determinants are not fully characterized. Here we report that plant RNAs, particularly miRNAs, which are more enriched in beebread than in royal jelly, delay development and decrease body and ovary size in honeybees, thereby preventing larval differentiation into queens and inducing development into worker bees. Mechanistic studies reveal that amTOR, a stimulatory gene in caste differentiation, is the direct target of miR162a. Interestingly, the same effect also exists in non-social Drosophila. When such plant RNAs and miRNAs are fed to Drosophila larvae, they cause extended developmental times and reductions in body weight and length, ovary size and fecundity. This study identifies an uncharacterized function of plant miRNAs that fine-tunes honeybee caste development, offering hints for understanding cross-kingdom interaction and co-evolution.
Project description:We use chromatin immunoprecipitation and high throughput sequencing to produce the first genome-wide maps of chromatin structure in the honeybee at a key larval stage where developmental canalization into queen or worker is irreversible. We find extensive genome-wide differences in H3K4me3, H3K27ac and H3K36me3, many of which correlate with caste-specific transcription. Furthermore, we identify H3K27ac as a key chromatin modification that most robustly defines caste and suggest that these regions may harbour caste-specific cis-acting elements such as enhancers.
Project description:We use chromatin immunoprecipitation and high throughput sequencing to produce the first genome-wide maps of chromatin structure in the honeybee at a key larval stage where developmental canalization into queen or worker is irreversible. We find extensive genome-wide differences in H3K4me3, H3K27ac and H3K36me3, many of which correlate with caste-specific transcription. Furthermore, we identify H3K27ac as a key chromatin modification that most robustly defines caste and suggest that these regions may harbour caste-specific cis-acting elements such as enhancers.
Project description:Social caste determination in the honey bee is assumed to be determined by the dietary status of the young larvae and translated into physiological and epigenetic changes through nutrient-sensing pathways. We have employed Illumina/Solexa sequencing to examine the small RNA content in the bee larval food source, and show that worker jelly is enriched in miRNA complexity and abundance relative to royal jelly. The miRNA levels in worker jelly were 7-215 fold higher than in royal jelly, and both jellies showed dynamic changes in miRNA content during the 4th to 6th day of larval development. Adding specific miRNAs to royal jelly elicited significant changes in queen larval mRNA expression and in morphological characters of the emerging adult queen bee. We propose that miRNAs in the nurse bee secretions constitute an additional element in the regulatory control of caste determination in the honey bee. We collected worker and royal jelly of the Italian honeybee (ZND No.1, Apis mellifera ligustica) at 73~90 hours (4th-day larvae), 97~114 hours (5th-day larvae), and 121~138 hours (6th-day larvae) after hatching. After total RNA was extractedM-BM- and quantified , relative equal amounts of total RNAs from each of the three sampling days were pooled into respectively worker and royal jelly samples, and the fraction of small RNAs less than 30nt long was retained and sequenced on the Illumina/Solexa high-throughput platform (HTP).
Project description:Social caste determination in the honey bee is assumed to be determined by the dietary status of the young larvae and translated into physiological and epigenetic changes through nutrient-sensing pathways. We have employed Illumina/Solexa sequencing to examine the small RNA content in the bee larval food source, and show that worker jelly is enriched in miRNA complexity and abundance relative to royal jelly. The miRNA levels in worker jelly were 7-215 fold higher than in royal jelly, and both jellies showed dynamic changes in miRNA content during the 4th to 6th day of larval development. Adding specific miRNAs to royal jelly elicited significant changes in queen larval mRNA expression and in morphological characters of the emerging adult queen bee. We propose that miRNAs in the nurse bee secretions constitute an additional element in the regulatory control of caste determination in the honey bee.
Project description:Honeybees are very important eusocial insects and are involved in the pollination of many plants. Queen bees and worker bees develop from the same fertilized eggs, and are thus genetically identical despite their substantial behavioural and physiological differences. The mechanism governing developmental differences between worker and queen bees has always attracted much interest. While there are several reports on mRNA expression related to caste differentiation, no systematic investigation of small RNAs has thus far been carried out. Results: Using deep sequencing we systematically profiled small RNA expression in 4th-6th day worker larvae and queen larvae (the critical stages at which the fates of workers and queens are determined), and found that 38 miRNAs were differentially expressed between worker and queen larvae. In addition, 639 mature miRNA candidates were identified in our work for the first time, of which, 526 were expressed only in workers (318) or queens (208). Conclusion: We present the first profile of honeybee small RNAs and explore the mechanism of caste differentiation between worker and queen bees. Caste-specific expression patterns and large discrepancies in small RNA profiles between worker and queen bees indicate that small RNAs may be related to the differential development of worker and queen bee larvae. Results presented here will make a valuable contribution to understanding the caste switch between worker and queen bees.
Project description:Female larvae of the honeybee (Apis mellifera) develop into either queens or workers depending on nutrition during larval development. This nutritional stimulus triggers different developmental trajectories, resulting in adults that differ in physiology, behaviour and life-span. To understand how these developmental trajectories are established we have undertaken a comprehensive analysis of differential gene expression throughout larval development. Gene expression of honeybee queen and worker larval samples was analysed at seven time points during larval development (6 hr, 12 hr, 36 hr, 60 hr, 84 hr, 108 hr and 132 hr)