Project description:HNF1α and HNF1β recognize the same DNA consensus sequence in the genome, to which they bind as homodimers or heterodimers. Both factors share a high degree of homology their DNA binding and dimerization (N-terminus) regions but have a more divergent C-terminal transactivation domain. HNF1β is essential for the generation of a functional male reproductive tract in mice and genital tract abnormalities are evident in humans with recessive mutations in HNF1β. The functions of HNF1α and HNF1β have been studied in epithelia from other several tissues (liver, kidney, intestine, and pancreas) but their role in the adult human epididymis epithelium (HEE) remains unexplored. We established that HNF1α/β are expressed in caput HEE cells and are predicted to occupy cis-regulatory elements in these cells. We next used Chromatin immunoprecipitation followed by deep sequencing (ChIP-Seq) to examine the genome-wide binding of HNF1 in caput HEE cells from two donors. The majority of the HNF1 peaks localized within intergenic regions and intronic regions rather than at promoter regions. This implies an important role for HNF1 in regulating gene expression though distal cis-regulatory elements. HNF1 occupies many genomic sites that are close to genes with a role in epididymis epithelial transport.
Project description:HNF1α and HNF1β recognize the same DNA consensus sequence in the genome, to which they bind as homodimers or heterodimers. Both factors share a high degree of homology their DNA binding and dimerization (N-terminus) regions but have a more divergent C-terminal transactivation domain. HNF1β is essential for the generation of a functional male reproductive tract in mice and genital tract abnormalities are evident in humans with recessive mutations in HNF1β. The functions of HNF1α and HNF1β have been studied in epithelia from other several tissues (liver, kidney, intestine, and pancreas) but their role in the adult human epididymis epithelium (HEE) remains unexplored. We established that HNF1α/β are expressed in caput HEE cells and are predicted to occupy cis-regulatory elements in these cells. To investigate the contribution of HNF1 in controlling gene expression in caput cells we performed siRNA-mediated depletion of HNF1α and HNF1β together, followed by RNA-seq analysis. Three replicas of caput cells were transfected with the specific siRNAs or with a non-targeting control siRNA. RNA-seq after HNF1 depletion showed significant alterations in the expression of genes encoding ion channels and exchangers that are involved in controlling the luminal environment in the caput epididymis.
Project description:The epithelium lining the epididymis has a pivotal role in ensuring a luminal environment that can support normal sperm maturation. Many of the individual genes that encode proteins involved in establishing the epididymal luminal fluid are well characterized. They include ion channels, ion exchangers, transporters and solute carriers. However, the molecular mechanisms that coordinate expression of these genes and modulate their activities in response to biological stimuli are less well understood. To identify cis-regulatory elements for genes expressed in human epididymis epithelial cells we generated genome-wide maps of open chromatin by DNase-seq. This analysis identified 33,542 epididymis-selective DNase I hypersensitive sites (DHS), which were not evident in five cell types of different lineages. Identification of genes with epididymis-selective DHS at their promoters revealed gene pathways that are active in immature epididymis epithelial cells. These include processes correlating with epithelial function and also others with specific roles in the epididymis including retinol metabolism and ascorbate and aldarate metabolism. Peaks of epididymis-selective chromatin were seen in the androgen receptor gene and the cystic fibrosis transmembrane conductance regulator (CFTR) gene, which has a critical role in regulating ion transport across the epididymis epithelium. In silico prediction of transcription factor binding sites that were over-represented in epididymis-selective DHS identified epithelial transcription factors including ELF5 and ELF3, the androgen receptor, Pax2 and Sox9, as components of epididymis transcriptional networks. Active genes, which are targets of each transcription factor, reveal important biological processes in the epididymis epithelium. To identify cis-regulatory elements for genes expressed in human epididymis epithelial cells we generated genome-wide maps of open chromatin by DNase-seq.
Project description:Background and Aims: Hepatocyte nuclear factor 1 (HNF1) transcription factors direct tissue specific gene regulation in liver, pancreas and kidney and are associated with diabetes. Here we investigate the transcriptional network governed by HNF1 in an intestinal epithelial cell line. Methods: Chromatin immunoprecipitation followed by direct sequencing (ChIP-seq) was used to identify HNF1 binding sites genome-wide. Direct targets of HNF1 were validated using conventional ChIP assays. siRNA-mediated depletion of HNF1 followed by RT-qPCR further confirmed target genes. The effect of HNF1 reduction on glucose uptake was measured by fluorescence activated cell sorting (FACS) following treatment of intestinal epithelial cells with 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl) amino]-2-deoxy-d-glucose (2-NBDG, a fluorescent glucose mimic). Results: HNF1 controls multiple pathways that are critical for intestinal epithelial cell function, including properties of the cell membrane, cellular response to hormones, and regulation of biosynthetic processes. Approximately 50% of HNF1 binding sites are also occupied by hepatocyte nuclear factor 4A (HNF4A), caudal type homeobox 2 (CDX2), and forkhead box A2 (FOXA2). Depletion of HNF1 increases FOXA2 abundance and decreases levels of CDX2. Moreover, loss of HNF1 inhibits glucose uptake by the intestinal epithelial cell line. Conclusions: These data show that HNF1 plays a critical role in regulating intestinal epithelial cell functions including glucose absorption. HNF1 interacts with other tissue-specific transcription factors to regulate differentiated properties of these cells.
Project description:The epithelium lining the epididymis has a pivotal role in ensuring a luminal environment that can support normal sperm maturation. Many of the individual genes that encode proteins involved in establishing the epididymal luminal fluid are well characterized. They include ion channels, ion exchangers, transporters and solute carriers. However, the molecular mechanisms that coordinate expression of these genes and modulate their activities in response to biological stimuli are less well understood. To identify cis-regulatory elements for genes expressed in human epididymis epithelial cells we generated genome-wide maps of open chromatin by DNase-seq. This analysis identified 33,542 epididymis-selective DNase I hypersensitive sites (DHS), which were not evident in five cell types of different lineages. Identification of genes with epididymis-selective DHS at their promoters revealed gene pathways that are active in immature epididymis epithelial cells. These include processes correlating with epithelial function and also others with specific roles in the epididymis including retinol metabolism and ascorbate and aldarate metabolism. Peaks of epididymis-selective chromatin were seen in the androgen receptor gene and the cystic fibrosis transmembrane conductance regulator (CFTR) gene, which has a critical role in regulating ion transport across the epididymis epithelium. In silico prediction of transcription factor binding sites that were over-represented in epididymis-selective DHS identified epithelial transcription factors including ELF5 and ELF3, the androgen receptor, Pax2 and Sox9, as components of epididymis transcriptional networks. Active genes, which are targets of each transcription factor, reveal important biological processes in the epididymis epithelium. HEE cells were cultured as described previously (Harris and Coleman 1989). RNA was isolated by Trizol extraction from three primary cultures of HEE cells. Total RNA was purified by Millipore Microcon YM-100 filter centrifugation and shipped to MoGene, MO, for gene expression analysis on Nimblegen 4 x 72K HG18 60mer arrays. This submission represents transcriptome component of study.
Project description:The epithelium lining the epididymis in the male reproductive tract maintains a luminal environment that promotes sperm cell maturation. This process is dependent on the coordinated expression of many genes that encode proteins with a role in epithelial transport. We previously generated genome-wide maps of open chromatin in primary human fetal epididymis epithelial cells to identify potential regulatory elements controlling coordinated gene expression in the epididymis epithelium. Subsequent in silico analysis identified transcription factor binding sites (TFBS) that were over-represented in the HEE open chromatin, include the motif for paired box 2 (PAX2). PAX2 is a critical transcriptional regulator of urogenital tract development, which is well studied in the kidney but is unexplored in the epididymis. Due to the limited lifespan of primary HEE cells in culture we investigated the role of PAX2 in an immortalized HEE cell line (REP). First, REP cells were evaluated by DNase-seq and their open chromatin map overlapped that of primary HEE cells at ~ 65% of sites. Moreover, the PAX2-binding motif was again identified as an overrepresented TFBS within intergenic open chromatin, though on fewer chromosomes than in the primary HEE cells. To identify PAX2-target genes in REP cells, RNA-seq analysis was performed after siRNA-mediated depletion of PAX2 in comparison to a non-targeting siRNA. In response to PAX2-represssion, 3142 transcripts were differentially expressed (1334 up-regulated and 1808 down-regulated). Novel PAX2 targets included multiple genes encoding proteins with a predicted function in the epididymis epithelium. examination of open chromatin region in REP cells with 2 replicates
Project description:The epithelium lining the epididymis in the male reproductive tract maintains a luminal environment that promotes sperm cell maturation. This process is dependent on the coordinated expression of many genes that encode proteins with a role in epithelial transport. We previously generated genome-wide maps of open chromatin in primary human fetal epididymis epithelial cells to identify potential regulatory elements controlling coordinated gene expression in the epididymis epithelium. Subsequent in silico analysis identified transcription factor binding sites (TFBS) that were over-represented in the HEE open chromatin, include the motif for paired box 2 (PAX2). PAX2 is a critical transcriptional regulator of urogenital tract development, which is well studied in the kidney but is unexplored in the epididymis. Due to the limited lifespan of primary HEE cells in culture we investigated the role of PAX2 in an immortalized HEE cell line (REP). First, REP cells were evaluated by DNase-seq and their open chromatin map overlapped that of primary HEE cells at ~ 65% of sites. Moreover, the PAX2-binding motif was again identified as an overrepresented TFBS within intergenic open chromatin, though on fewer chromosomes than in the primary HEE cells. To identify PAX2-target genes in REP cells, RNA-seq analysis was performed after siRNA-mediated depletion of PAX2 in comparison to a non-targeting siRNA. In response to PAX2-represssion, 3142 transcripts were differentially expressed (1334 up-regulated and 1808 down-regulated). Novel PAX2 targets included multiple genes encoding proteins with a predicted function in the epididymis epithelium. mRNA profile of control and PAX2 knockdown REP cells
Project description:The epithelium lining the epididymis in the male reproductive tract maintains a luminal environment that promotes sperm cell maturation. This process is dependent on the coordinated expression of many genes that encode proteins with a role in epithelial transport. We previously generated genome-wide maps of open chromatin in primary human fetal epididymis epithelial cells to identify potential regulatory elements controlling coordinated gene expression in the epididymis epithelium. Subsequent in silico analysis identified transcription factor binding sites (TFBS) that were over-represented in the HEE open chromatin, include the motif for paired box 2 (PAX2). PAX2 is a critical transcriptional regulator of urogenital tract development, which is well studied in the kidney but is unexplored in the epididymis. Due to the limited lifespan of primary HEE cells in culture we investigated the role of PAX2 in an immortalized HEE cell line (REP). First, REP cells were evaluated by DNase-seq and their open chromatin map overlapped that of primary HEE cells at ~ 65% of sites. Moreover, the PAX2-binding motif was again identified as an overrepresented TFBS within intergenic open chromatin, though on fewer chromosomes than in the primary HEE cells. To identify PAX2-target genes in REP cells, RNA-seq analysis was performed after siRNA-mediated depletion of PAX2 in comparison to a non-targeting siRNA. In response to PAX2-represssion, 3142 transcripts were differentially expressed (1334 up-regulated and 1808 down-regulated). Novel PAX2 targets included multiple genes encoding proteins with a predicted function in the epididymis epithelium. Gene expression in REP cells was measured at 16 hours after exposure to 1nM R1881 or vehicle control.