Project description:C2H2 zinc finger proteins represent the largest and most enigmatic class of human transcription factors. Their C2H2 arrays are highly variable, indicating that most will have unique DNA binding motifs. However, most of the binding motifs have not been directly determined. We have determined the binding sites and motifs of 119 C2H2 zinc finger proteins and the expression pattern of 80 cell lines overexpressing C2H2 zinc finger proteins in order to study the role of C2H2 zinc finger proteins in gene regulation. We expressed GFP-tagged C2H2-ZF proteins in stable transgenic HEK293 cells. Total RNA was isolated using Trizol and sequencing libraries were constructed using TruSeq Stranded Total RNA Library Prep Kit with Ribo-Zero Gold or TruSeq RNA Library Preparation Kit v2.
Project description:The largest and most diverse class of eukaryotic transcription factors contain Cys2-His2 zinc fingers (C2H2-ZFs), each of which typically binds a DNA nucleotide triplet within a larger binding site. Frequent recombination and diversification of their DNA-contacting residues suggests that these zinc fingers play a prevalent role in adaptive evolution. Very little is known about the function and evolution of the vast majority of C2H2-ZFs, including whether they even bind DNA. We determined in vivo binding sites of 39 human C2H2-ZF proteins, and correlated them with potential functions for these proteins. We expressed GFP-tagged C2H2-ZF proteins in stable transgenic HEK293 cells. Chromatin immunoprecipitation was performed as described before (Schmidt et al., Methods, 2009), and ChIP samples along with several control samples from different experimental batches were sequenced on Illumina HiSeq 2500. Reads were mapped to hg19 (GRCh37) assembly, and peaks were identified by MACS using an experiment-specific background that controls for various biases, such as the Sono-Seq effect as well as potential co-purification of targets of other (interacting) proteins.
Project description:The largest and most diverse class of eukaryotic transcription factors contain Cys2-His2 zinc fingers (C2H2-ZFs), each of which typically binds a DNA nucleotide triplet within a larger binding site. Frequent recombination and diversification of their DNA-contacting residues suggests that these zinc fingers play a prevalent role in adaptive evolution. Very little is known about the function and evolution of the vast majority of C2H2-ZFs, including whether they even bind DNA. We determined in vivo binding sites of 39 human C2H2-ZF proteins, and correlated them with potential functions for these proteins. We expressed GFP-tagged C2H2-ZF proteins in stable transgenic HEK293 cells. Chromatin immunoprecipitation was performed as described before (Schmidt et al., Methods, 2009), and ChIP samples along with several control samples from different experimental batches were sequenced on Illumina HiSeq 2000. Reads were mapped to hg19 (GRCh37) assembly, and peaks were identified by MACS using an experiment-specific background that controls for various biases, such as the Sono-Seq effect as well as potential co-purification of targets of other (interacting) proteins.
Project description:This SuperSeries is composed of the SubSeries listed below. Cys2-His2 zinc finger (C2H2-ZF) proteins represent the largest class of putative human transcription factors (TFs). However, it is unknown whether most C2H2-ZFs even bind DNA, or what sequences they bind. Using a combination of bacterial one-hybrid (B1H) assays, protein-binding microarrays (PBMs), and ChIP-seq, we have found that most natural C2H2-ZFs bind DNA both in vitro and in vivo. This SuperSeries contains the data for identification of C2H2-ZF binding preferences using these three approaches. Refer to individual Series
Project description:This SuperSeries is composed of the SubSeries listed below. Cys2-His2 zinc finger (C2H2-ZF) proteins represent the largest class of putative human transcription factors (TFs). However, it is unknown whether most C2H2-ZFs even bind DNA, or what sequences they bind. Using a combination of bacterial one-hybrid (B1H) assays, protein-binding microarrays (PBMs), and ChIP-seq, we have found that most natural C2H2-ZFs bind DNA both in vitro and in vivo. This SuperSeries contains the data for identification of C2H2-ZF binding preferences using these three approaches.
Project description:The largest and most diverse class of eukaryotic transcription factors contain Cys2-His2 zinc fingers (C2H2-ZFs), each of which typically binds a DNA nucleotide triplet within a larger binding site. Frequent recombination and diversification of their DNA-contacting residues suggests that these zinc fingers play a prevalent role in adaptive evolution. Very little is known about the function and evolution of the vast majority of C2H2-ZFs, including whether they even bind DNA. We determined in vivo binding sites of 39 human C2H2-ZF proteins, and correlated them with potential functions for these proteins.
Project description:The largest and most diverse class of eukaryotic transcription factors contain Cys2-His2 zinc fingers (C2H2-ZFs), each of which typically binds a DNA nucleotide triplet within a larger binding site. Frequent recombination and diversification of their DNA-contacting residues suggests that these zinc fingers play a prevalent role in adaptive evolution. Very little is known about the function and evolution of the vast majority of C2H2-ZFs, including whether they even bind DNA. We determined in vivo binding sites of 39 human C2H2-ZF proteins, and correlated them with potential functions for these proteins.
Project description:The largest and most diverse class of eukaryotic transcription factors contain Cys2-His2 zinc fingers (C2H2-ZFs), each of which typically binds a DNA nucleotide triplet within a larger binding site. Frequent recombination and diversification of their DNA-contacting residues suggests that these zinc fingers play a prevalent role in adaptive evolution. Very little is known about the function and evolution of the vast majority of C2H2-ZFs, including whether they even bind DNA. Using the bacterial 1-hybrid (B1H) system, we determined DNA-binding motifs for thousands of individual natural C2H2-ZFs, and correlated them with C2H2-ZF specificity residues. The data reported here includes results of protein-binding microarray (PBM) assays for 146 of these natural C2H2-ZFs, performed in order to validate B1H assays and to explore the DNA-binding specificity of C2H2-ZFs. Protein binding microarray (PBM) experiments were performed for a set of 185 variants of mouse Egr1 in which the third zinc finger was replaced by different C2H2-ZFs from different organisms. Briefly, the PBMs involved binding GST-tagged DNA-binding proteins to two double-stranded 44K Agilent microarrays, each containing a different DeBruijn sequence design, in order to determine their sequence preferences. Details of the PBM protocol are described in Berger et al., Nature Biotechnology 2006. Among the 185 variants examined, 146 variants yielded motifs in PBMs, which are included here.
Project description:The eleven zinc finger (ZF) protein CTCF regulates topologically associating domain (TAD) formation and transcription through selective binding to thousands of genomic sites. We replaced endogenous CTCF in mouse embryonic stem (ES) cells with GFP-tagged wildtype or mutant proteins lacking individual ZFs. We examined the various ES cell lines using next generation sequencing methods (ChIP-Seq, RNA-Seq, MedSeq, HiC) in order to identify additional determinants of CTCF positioning and function.